Multi-image steganography refers to a data-hiding scheme where a user tries to hide confidential messages within multiple images. Different from the traditional steganography which only requires the security of an ind...
详细信息
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approache...
详细信息
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image ***,the multistage generation strategy results in complex T2I ***,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation *** results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
Machine learning has profoundly transformed various industries, notably revolutionizing the retail sector through diverse applications that significantly enhance operational efficiency and performance. This comprehens...
详细信息
Image-text retrieval aims to capture the semantic correspondence between images and texts,which serves as a foundation and crucial component in multi-modal recommendations,search systems,and online *** mainstream meth...
详细信息
Image-text retrieval aims to capture the semantic correspondence between images and texts,which serves as a foundation and crucial component in multi-modal recommendations,search systems,and online *** mainstream methods primarily focus on modeling the association of image-text pairs while neglecting the advantageous impact of multi-task learning on image-text *** this end,a multi-task visual semantic embedding network(MVSEN)is proposed for image-text ***,we design two auxiliary tasks,including text-text matching and multi-label classification,for semantic constraints to improve the generalization and robustness of visual semantic embedding from a training ***,we present an intra-and inter-modality interaction scheme to learn discriminative visual and textual feature representations by facilitating information flow within and between ***,we utilize multi-layer graph convolutional networks in a cascading manner to infer the correlation of image-text *** results show that MVSEN outperforms state-of-the-art methods on two publicly available datasets,Flickr30K and MSCOCO,with rSum improvements of 8.2%and 3.0%,respectively.
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting *** BASs in use...
详细信息
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting *** BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS *** this paper,we provide a comprehensive,up-to-date survey on BASs and attacks against seven BAS protocols including BACnet,EnOcean,KNX,LonWorks,Modbus,ZigBee,and *** studies of secure BAS protocols are also presented,covering BACnet Secure Connect,KNX Data Secure,KNX/IP Secure,ModBus/TCP Security,EnOcean High Security and Z-Wave *** and ZigBee do not have security *** point out how these security protocols improve the security of the BAS and what issues remain.A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of *** seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(...
详细信息
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on ***,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser *** a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper ***,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive *** heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics.
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon ...
详细信息
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon caused by the imprecise compensation of the time-varying reference input, a novel time-varying event-triggered piecewise continuous control law and a triggering mechanism with a time-varying triggering function are developed. Second, an explicit integral input-to-state stable Lyapunov function is constructed for the time-varying closed-loop system regarding the sampling error as the external input. The origin of the closed-loop system is shown to be uniformly globally asymptotically stable for any global exponential decaying threshold signals, which in turn rules out the Zeno behavior. Moreover, infinitely fast sampling can be avoided by appropriately tuning the exponential convergence rate of the threshold signal. A numerical simulation example is provided to illustrate the proposed control approach.
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictiv...
详细信息
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictive results. However, existing time prediction methods based on deep learning have poor interpretability, an explainable business process remaining time prediction method is proposed using reachability graph,which consists of prediction model construction and visualization. For prediction models, a Petri net is mined and the reachability graph is constructed to obtain the transition occurrence vector. Then, prefixes and corresponding suffixes are generated to cluster into different transition partitions according to transition occurrence vector. Next,the bidirectional recurrent neural network with attention is applied to each transition partition to encode the prefixes, and the deep transfer learning between different transition partitions is performed. For the visualization of prediction models, the evaluation values are added to the sub-processes of a Petri net to realize the visualization of the prediction models. Finally, the proposed method is validated by publicly available event logs.
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of...
详细信息
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of distinguishing between truthful and deceptive *** news,a prevalent issue,particularly on social media,complicates the assessment of news *** pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources,creating confusion and polarizing *** the volume of information grows,individuals increasingly struggle to discern credible content from false narratives,leading to widespread misinformation and potentially harmful *** numerous methodologies proposed for fake news detection,including knowledge-based,language-based,and machine-learning approaches,their efficacy often diminishes when confronted with high-dimensional datasets and data riddled with noise or *** study addresses this challenge by evaluating the synergistic benefits of combining feature extraction and feature selection techniques in fake news *** employ multiple feature extraction methods,including Count Vectorizer,Bag of Words,Global Vectors for Word Representation(GloVe),Word to Vector(Word2Vec),and Term Frequency-Inverse Document Frequency(TF-IDF),alongside feature selection techniques such as Information Gain,Chi-Square,Principal Component Analysis(PCA),and Document *** comprehensive approach enhances the model’s ability to identify and analyze relevant features,leading to more accurate and effective fake news *** findings highlight the importance of a multi-faceted approach,offering a significant improvement in model accuracy and ***,the study emphasizes the adaptability of the proposed ensemble model across diverse datasets,reinforcing its potential for broader application in real-world *** introduce a pioneering ensemble
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such ser...
详细信息
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such services utilizing GPS through our ***,when users utilize these services,they inevitably expose personal information such as their ID and sensitive location to the *** to untrustworthy servers and malicious attackers with colossal background knowledge,users'personal information is at risk on these ***,many privacy-preserving solutions for protecting trajectories have significantly decreased utility after *** have come up with a new trajectory privacy protection solution that contraposes the area of interest for ***,Staying Points Detection Method based on Temporal-Spatial Restrictions(SPDM-TSR)is an interest area mining method based on temporal-spatial restrictions,which can clearly distinguish between staying and moving ***,our privacy protection mechanism focuses on the user's areas of interest rather than the entire ***,our proposed mechanism does not rely on third-party service providers and the attackers'background knowledge *** test our models on real datasets,and the results indicate that our proposed algorithm can provide a high standard privacy guarantee as well as data availability.
暂无评论