Dementia is a general term used to indicate any disorder related to human memory. The various memory-related problems severely affect the human brain and so the individual feels difficulty in doing their normal physic...
详细信息
Investing money through mutual fund benefits the small investors to access equities of big companies with a small amount of capital. It experiences the fluctuation of price along with the performance of stock, which i...
详细信息
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensem...
详细信息
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensemble model for the intrusion classification system yielded promising results based on the knowledge of many prior *** research work aimed to create a more diverse and effective ensemble *** this end,selected six classification models,Logistic Regression(LR),Naive Bayes(NB),K-Nearest Neighbor(KNN),Decision Tree(DT),Support Vector Machine(SVM),and Random Forest(RF)from existing study to run as independent *** the individual models were trained,a Correlation-Based Diversity Matrix(CDM)was created by determining their *** models for the ensemble were chosen by the proposed Modified Minimization Approach for Model Subset Selection(Modified-MMS)from Lower triangular-CDM(L-CDM)as *** proposed algorithm performance was assessed using the Network Security Laboratory—Knowledge Discovery in Databases(NSL-KDD)dataset,and several performance metrics,including accuracy,precision,recall,and *** selecting a diverse set of models,the proposed system enhances the performance of an ensemble by reducing overfitting and increasing prediction *** proposed work achieved an impressive accuracy of 99.26%,using only two classification models in an ensemble,which surpasses the performance of a larger ensemble that employs six classification models.
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security...
详细信息
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security of the *** intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system *** this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot *** this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant *** proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO *** results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness *** a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
Perovskite solar cells have shown great potential in the field of underwater solar cells due to their excellent optoelectronic properties;however,their underwater performance and stability still hinder their practical...
详细信息
Perovskite solar cells have shown great potential in the field of underwater solar cells due to their excellent optoelectronic properties;however,their underwater performance and stability still hinder their practical *** this research,a 1H,1H,2H,2H-heptadecafluorodecyl acrylate(HFDA)anti-reflection coating(ARC)was introduced as a high-transparent material for encapsulating perovskite solar modules(PSMs).Optical characterization results revealed that HFDA can effectively reduce reflection of light below 800 nm,aiding in the absorption of light within this wavelength range by underwater solar ***,a remarkable efficiency of 14.65%was achieved even at a water depth of 50 ***,the concentration of Pb^(2+)for HFDA-encapsulated film is significantly reduced from 186 to 16.5 ppb after being immersed in water for 347 ***,the encapsulated PSMs still remained above 80%of their initial efficiency after continuous underwater illumination for 400 ***,being exposed to air,the encapsulated PSMs maintained 94%of their original efficiency after 1000 h light *** highly transparent ARC shows great potentials in enhancing the stability of perovskite devices,applicable not only to underwater cells but also extendable to land-based photovoltaic devices.
Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data ar...
详细信息
Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process;this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, preci
The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human *** widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental mo...
详细信息
The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human *** widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental monitoring for a use in both civil and military *** make use of these data to monitor and keep track of the physical data of the surrounding environment in order to ensure the sustainability of the *** data have to be picked up by the sensor,and then sent to the sink node where they may be *** nodes of the WSNs are powered by batteries,therefore they eventually run out of *** energy restriction has an effect on the network life span and environmental *** objective of this study is to further improve the Engroove Leach(EL)protocol’s energy efficiency so that the network can operate for a very long time while consuming the least amount of *** lifespan of WSNs is being extended often using clustering and routing *** Meta Inspired Hawks Fragment Optimization(MIHFO)system,which is based on passive clustering,is used in this study to do *** cluster head is chosen based on the nodes’residual energy,distance to neighbors,distance to base station,node degree,and node *** on distance,residual energy,and node degree,an algorithm known as Heuristic Wing Antfly Optimization(HWAFO)selects the optimum path between the cluster head and Base Station(BS).They examine the number of nodes that are active,their energy consumption,and the number of data packets that the BS *** overall experimentation is carried out under the MATLAB *** the analysis,it has been discovered that the suggested approach yields noticeably superior outcomes in terms of throughput,packet delivery and drop ratio,and average energy consumption.
Graph processing has been widely used in many scenarios,from scientific computing to artificial *** processing exhibits irregular computational parallelism and random memory accesses,unlike traditional ***,running gra...
详细信息
Graph processing has been widely used in many scenarios,from scientific computing to artificial *** processing exhibits irregular computational parallelism and random memory accesses,unlike traditional ***,running graph processing workloads on conventional architectures(e.g.,CPUs and GPUs)often shows a significantly low compute-memory ratio with few performance benefits,which can be,in many cases,even slower than a specialized single-thread graph *** domain-specific hardware designs are essential for graph processing,it is still challenging to transform the hardware capability to performance boost without coupled software *** article presents a graph processing ecosystem from hardware to *** start by introducing a series of hardware accelerators as the foundation of this ***,the codesigned parallel graph systems and their distributed techniques are presented to support graph ***,we introduce our efforts on novel graph applications and hardware *** results show that various graph applications can be efficiently accelerated in this graph processing ecosystem.
In this paper, we study the performance of wireless-powered cluster-based multi-hop cognitive relay networks (MCRNs), where secondary nodes harvest energy from multiple dedicated power beacons (PBs) and share the spec...
详细信息
Generative AI models for music and the arts in general are increasingly complex and hard to *** field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understandable to **...
详细信息
Generative AI models for music and the arts in general are increasingly complex and hard to *** field of ex-plainable AI(XAI)seeks to make complex and opaque AI models such as neural networks more understandable to *** ap-proach to making generative AI models more understandable is to impose a small number of semantically meaningful attributes on gen-erative AI *** paper contributes a systematic examination of the impact that different combinations of variational auto-en-coder models(measureVAE and adversarialVAE),configurations of latent space in the AI model(from 4 to 256 latent dimensions),and training datasets(Irish folk,Turkish folk,classical,and pop)have on music generation performance when 2 or 4 meaningful musical at-tributes are imposed on the generative *** date,there have been no systematic comparisons of such models at this level of com-binatorial *** findings show that measureVAE has better reconstruction performance than adversarialVAE which has better musical attribute *** demonstrate that measureVAE was able to generate music across music genres with inter-pretable musical dimensions of control,and performs best with low complexity music such as pop and *** recommend that a 32 or 64 latent dimensional space is optimal for 4 regularised dimensions when using measureVAE to generate music across *** res-ults are the first detailed comparisons of configurations of state-of-the-art generative AI models for music and can be used to help select and configure AI models,musical features,and datasets for more understandable generation of music.
暂无评论