Apricot detection is a prerequisite for counting and harvesting tasks. Existing algorithms face challenges in adapting to the impacts of complex environmental factors such as lighting variations, shadows, dense foliag...
详细信息
With continuous expansion of satellite applications,the requirements for satellite communication services,such as communication delay,transmission bandwidth,transmission power consumption,and communication coverage,ar...
详细信息
With continuous expansion of satellite applications,the requirements for satellite communication services,such as communication delay,transmission bandwidth,transmission power consumption,and communication coverage,are becoming *** paper first presents an overview of the current development status of Low Earth Orbit(LEO)satellite constellations,and then conducts a demand analysis for multi-satellite data transmission based on LEO satellite *** problem is described,and the challenges and difficulties of the problem are analyzed *** this basis,a multi-satellite data-transmission mathematical model is then *** classical heuristic allocating strategies on the features of the proposed model,with the reinforcement learning algorithm Deep Q-Network(DQN),a two-stage optimization framework based on heuristic and DQN is ***,by taking into account the spatial and temporal distribution characteristics of satellite and facility resources,a multi-satellite scheduling instance dataset is *** results validate the rationality and correctness of the DQN algorithm in solving the collaborative scheduling problem of multi-satellite data transmission.
To enhance the capability of classifying and localizing defects on the surface of hot-rolled strips, this paper proposed an algorithm based on YOLOv7 to improve defect detection. The BI-SPPFCSPC structure was incorpor...
详细信息
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...
详细信息
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent syst...
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent systems with bandit feedback is to explore and understand the equilibrium state to ensure stable and tractable system performance.
Data hierarchy,as a hidden property of data structure,exists in a wide range of machine learning applications.A common practice to classify such hierarchical data is first to encode the data in the Euclidean space,and...
详细信息
Data hierarchy,as a hidden property of data structure,exists in a wide range of machine learning applications.A common practice to classify such hierarchical data is first to encode the data in the Euclidean space,and then train a Euclidean ***,such a paradigm leads to a performance drop due to distortion of data embedding in the Euclidean *** relieve this issue,hyperbolic geometry is investigated as an alternative space to encode the hierarchical data for its higher ability to capture the hierarchical *** methods cannot explore the full potential of the hyperbolic geometry,in the sense that such methods define the hyperbolic operations in the tangent plane,causing the distortion of data *** this paper,we develop two novel kernel formulations in the hyperbolic space,with one being positive definite(PD)and another one being indefinite,to solve the classification tasks in hyperbolic *** PD one is defined via mapping the hyperbolic data to the Drury-Arveson(DA)space,which is a special reproducing kernel Hilbert space(RKHS).To further increase the discrimination of the classifier,an indefinite kernel is further defined in the Krein ***,we design a 2-layer nested indefinite kernel which first maps hyperbolic data into the DA spaces,followed by a mapping from the DA spaces to the Krein *** experiments on real-world datasets demonstrate the superiority ofthe proposed kernels.
Time series data plays a crucial role in intelligent transportation *** flow forecasting represents a precise estimation of future traffic flow within a specific region and time *** approaches,including sequence perio...
详细信息
Time series data plays a crucial role in intelligent transportation *** flow forecasting represents a precise estimation of future traffic flow within a specific region and time *** approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series ***,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term ***,the effectiveness of existing methods diminishes in such ***,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic *** model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final *** results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios.
Traditional autonomous driving usually requires a large number of vehicles to upload data to a central server for training. However, collecting data from vehicles may violate personal privacy as road environmental inf...
详细信息
Video colorization aims to add color to grayscale or monochrome *** existing methods have achieved substantial and noteworthy results in the field of image colorization,video colorization presents more formidable obst...
详细信息
Video colorization aims to add color to grayscale or monochrome *** existing methods have achieved substantial and noteworthy results in the field of image colorization,video colorization presents more formidable obstacles due to the additional necessity for temporal ***,there is rarely a systematic review of video colorization *** this paper,we aim to review existing state-of-the-art video colorization *** addition,maintaining spatial-temporal consistency is pivotal to the process of video *** gain deeper insight into the evolution of existing methods in terms of spatial-temporal consistency,we further review video colorization methods from a novel *** colorization methods can be categorized into four main categories:optical-flow based methods,scribble-based methods,exemplar-based methods,and fully automatic ***,optical-flow based methods rely heavily on accurate optical-flow estimation,scribble-based methods require extensive user interaction and modifications,exemplar-based methods face challenges in obtaining suitable reference images,and fully automatic methods often struggle to meet specific colorization *** also discuss the existing challenges and highlight several future research opportunities worth exploring.
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as *** has been seen as a robust solution to relevant challenges.A significant delay can ha...
详细信息
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as *** has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud ***,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing *** proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution ***,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating *** study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam *** outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection *** excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage *** efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and *** simulated data indicates that the new MCWOA outpaces other methods across all *** study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
暂无评论