Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...
详细信息
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
The slow development of traditional computing has prompted the search for new materials to replace silicon-based computers. Bio-computers, which use molecules as the basis of computation, are highly parallel and infor...
详细信息
The slow development of traditional computing has prompted the search for new materials to replace silicon-based computers. Bio-computers, which use molecules as the basis of computation, are highly parallel and information capable, attracting a lot of attention. In this study, we designed a NAND logic gate based on the DNA strand displacement mechanism. We assembled a molecular calculation model, a 4-wire-2-wire priority encoder logic circuit, by cascading the proposed NAND gates. Different concentrations of input DNA chains were added into the system, resulting in corresponding output, through DNA hybridization and strand displacement. Therefore, it achieved the function of a priority encoder. Simulation results verify the effectiveness and accuracy of the molecular NAND logic gate and the priority coding system presented in this study. The unique point of this proposed circuit is that we cascaded only one kind of logic gate, which provides a beneficial exploration for the subsequent development of complex DNA cascade circuits and the realization of the logical coding function of information.
The past decades have witnessed a wide application of federated learning in crowd sensing,to handle the numerous data collected by the sensors and provide the users with precise and customized ***,how to protect the p...
详细信息
The past decades have witnessed a wide application of federated learning in crowd sensing,to handle the numerous data collected by the sensors and provide the users with precise and customized ***,how to protect the private information of users in federated learning has become an important research *** with the differential privacy(DP)technique and secure multiparty computation(SMC)strategy,the covert communication mechanism in federated learning is more efficient and energy-saving in training the ma-chine learning *** this paper,we study the covert communication problem for federated learning in crowd sensing Internet-of-Things *** from the previous works about covert communication in federated learning,most of which are considered in a centralized framework and experimental-based,we firstly proposes a centralized covert communication mechanism for federated learning among n learning agents,the time complexity of which is O(log n),approximating to the optimal ***,for the federated learning without parameter server,which is a harder case,we show that solving such a problem is NP-hard and prove the existence of a distributed covert communication mechanism with O(log logΔlog n)times,approximating to the optimal solution.Δis the maximum distance between any pair of learning *** analysis and nu-merical simulations are presented to show the performance of our covert communication *** hope that our covert communication work can shed some light on how to protect the privacy of federated learning in crowd sensing from the view of communications.
Modifying a code segment may give rise to a consistency issue when the code segment belongs to a clone group comprising closely similar code *** studies have demonstrated that such consistent changes can incur extra m...
详细信息
Modifying a code segment may give rise to a consistency issue when the code segment belongs to a clone group comprising closely similar code *** studies have demonstrated that such consistent changes can incur extra maintenance costs when clones are checked for consistency and introduce defects if developers forget to change clones consistently when *** address this problem,researchers have proposed an approach to predict clone consistency in advance with handcrafted attributes,notably using machine learning *** these attributes can help predict clone consistency to some extent,the capability of such an approach is generally weak and unsatisfactory in *** limitations in capability are especially severe at a project's infancy stage when there is not sufficient within-project data to model clone consistency behavior,and cross-project data have not been helpful in supporting *** this paper,we propose the Clone Hierarchical Attention Neural Network(CHANN)to represent code clones and their evolution by adopting a hierarchical perspective of code,context,and code evolution,and thus enhancing the effectiveness of clone con-sistency *** assess the effectiveness of CHANN,we conduct experiments on the dataset collected from eight open-source *** experimental results show that CHANN is highly effective in predicting clone consistency,and the precision,recall,and F-measure attained in prediction are around 82%.These findings support our hypothesis that the hierarchical neural network can help developers predict clone consistency effectively in the case of cross-project incubation when insufficient data are available at the early stage of software development.
Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so *** the other hand,quantum computing has attracted much atten...
详细信息
Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so *** the other hand,quantum computing has attracted much attention and has been shown to surpass classical computing on solving some computational ***,crossover studies of the two fields seem to be missing in the *** paper initiates the study of quantum algorithms for matroid property *** is shown that quadratic quantum speedup is possible for the calculation problem of finding the girth or the number of circuits(bases,flats,hyperplanes)of a matroid,and for the decision problem of deciding whether a matroid is uniform or Eulerian,by giving a uniform lower boundΩ■on the query complexity of all these *** the other hand,for the uniform matroid decision problem,an asymptotically optimal quantum algorithm is proposed which achieves the lower bound,and for the girth problem,an almost optimal quantum algorithm is given with query complexityO■.In addition,for the paving matroid decision problem,a lower boundΩ■on the query complexity is obtained,and an O■ quantum algorithm is presented.
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems,...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, and selfdriving capabilities for improved system performance. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
This research proposes an Intelligent Decision Support System for Ground-Based Air Defense (GBAD) environments, which consist of Defended Assets (DA) on the ground that require protection from enemy aerial threats. A ...
详细信息
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er soun...
详细信息
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er sound race ***,this constraint-based approach has serious limitations on helping programmers analyze and understand data ***,it may report a large number of false positives due to the unrecognized dataflow propa-gation of the ***,it recommends a wide range of thread context switches to schedule the reported race(in-cluding the false one)whenever this race is exposed during the constraint-solving *** ad hoc recommendation imposes too many context switches,which complicates the data race *** address these two limitations in the state-of-the-art constraint-based race detection,this paper proposes DFTracker,an improved constraint-based race detec-tor to recommend each data race with minimal thread context ***,we reduce the false positives by ana-lyzing and tracking the dataflow in the *** this means,DFTracker thus reduces the unnecessary analysis of false race *** further propose a novel algorithm to recommend an effective race schedule with minimal thread con-text switches for each data *** experimental results on the real applications demonstrate that 1)without removing any true data race,DFTracker effectively prunes false positives by 68%in comparison with the state-of-the-art constraint-based race detector;2)DFTracker recommends as low as 2.6-8.3(4.7 on average)thread context switches per data race in the real world,which is 81.6%fewer context switches per data race than the state-of-the-art constraint based race ***,DFTracker can be used as an effective tool to understand the data race for programmers.
Random testing is scalable but often fails to hit corner program behaviors,while systematic testing (e.g.,concolic execution) is promising to cover corner program behaviors but is not scalable to explore all program...
详细信息
Random testing is scalable but often fails to hit corner program behaviors,while systematic testing (e.g.,concolic execution) is promising to cover corner program behaviors but is not scalable to explore all program *** attempts to integrate random testing with systematic testing lack targeted *** this paper,we propose a guided hybrid testing approach,named BATON,to synergize random testing with concolic *** integrates the knowledge inside test cases and their executions into a conditional execution graph,and uses such knowledge to guide test case ***,we learn classification models for some conditionals in the conditional execution graph in a demand-driven *** models are used to guide random testing to reach and cover partially-covered *** further employ targeted concolic testing to cover conditionals that cannot be fully covered by guided random *** implemented BATONfor Java and evaluated it on three *** results show that BATONimproved branch coverage and mutation score over random testing by 16.2%–29.4%and 19.0%–30.0%,over adaptive random testing by 16.8%–33.8%and 19.4%–34.2%,over concolic testing by 2.3%–29.9%and 2.9%–30.1%,and over simple hybrid testing by 1.6%–14.5%and 1.4%–18.7%.
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least t...
详细信息
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least two ***, the performance of FedRecs is compromised due to highly sparse on-device data for each client. Second, the system's robustness is undermined by the vulnerability to model poisoning attacks launched by malicious users. In this paper, we introduce a novel contrastive learning framework designed to fully leverage the client's sparse data through embedding augmentation, referred to as CL4FedRec. Unlike previous contrastive learning approaches in FedRecs that necessitate clients to share their private parameters, our CL4FedRec aligns with the basic FedRec learning protocol, ensuring compatibility with most existing FedRec implementations. We then evaluate the robustness of FedRecs equipped with CL4FedRec by subjecting it to several state-of-the-art model poisoning attacks. Surprisingly, our observations reveal that contrastive learning tends to exacerbate the vulnerability of FedRecs to these attacks. This is attributed to the enhanced embedding uniformity, making the polluted target item embedding easily proximate to popular items. Based on this insight, we propose an enhanced and robust version of CL4FedRec(rCL4FedRec) by introducing a regularizer to maintain the distance among item embeddings with different popularity levels. Extensive experiments conducted on four commonly used recommendation datasets demonstrate that rCL4FedRec significantly enhances both the model's performance and the robustness of FedRecs.
暂无评论