X-ray security inspection for detecting prohibited items is widely used to maintain social order and ensure the safety of people’s lives and property. Due to the large number of parameters and high computational comp...
详细信息
Effective resource allocation can exploit the advantage of intelligent reflective surface(IRS)assisted mobile edge computing(MEC)***,it is challenging to balance the limited energy of MTs and the strict delay requirem...
详细信息
Effective resource allocation can exploit the advantage of intelligent reflective surface(IRS)assisted mobile edge computing(MEC)***,it is challenging to balance the limited energy of MTs and the strict delay requirement of their *** this paper,in order to tackle the challenge,we jointly optimize the offloading delay and energy consumption of mobile terminals(MTs)to realize the delay-energy tradeoff in an IRS-assisted MEC network,in which non-orthogonal multiple access(NOMA)and multiantenna are applied to improve spectral *** achieve the optimal delay-energy tradeoff,an offloading cost minimization model is proposed,in which the edge computing resource allocation,signal detecting vector,uplink transmission power,and IRS phase shift coefficient are needed to be jointly *** optimization of the model is a multi-level fractional problem in complex fields with some coupled high dimension *** solve the intractable problem,we decouple the original problem into a computing subproblem and a wireless transmission subproblem based on the uncoupled relationship between different variable *** computing subproblem is proved convex and the closed-form solution is obtained for the edge computing resource ***,the wireless transmission subproblem is solved iteratively through decoupling the residual *** each iteration,the closed-form solution of residual variables is obtained through different successive convex approximation(SCA)*** verify the proposed algorithm can converge to an optimum with polynomial *** results indicate the proposed method achieves average saved costs of 65.64%,11.24%,and 9.49%over three benchmark methods respectively.
With an aim to comprehend the precise regulatory mechanism of dioscin against endometrial carcinoma(EC), we firstly extracted the components from Polygonatum sibiricum followed by identification and structural charact...
详细信息
With an aim to comprehend the precise regulatory mechanism of dioscin against endometrial carcinoma(EC), we firstly extracted the components from Polygonatum sibiricum followed by identification and structural characterization. The anti-EC activity of dioscin was initially determined based on the inhibition of Ishikawa cell proliferation and tumor growth. The high-throughput sequencing data indicated that dioscin not only promoted apoptosis, including decrease of poly ADP-ribose polymerase(PARP) and B-cell lymphoma-2(Bcl-2) and increase of c-PARP and Bcl-2-associcated agonist of cell death(Bad), but also induced autophagy, including increase of autophagic lysosomes and LC3Ⅱ/LC3Ⅰ ratio. Mechanistic exploration suggested that dioscin induced autophagy and apoptosis through inhibition of PI3K/AKT/mTOR signaling pathway. Besides, the dioscin-regulated p53 pathway was mainly involved in autophagy induction. Furthermore, inhibition of Ishikawa cell autophagy was linked to dioscin-induced apoptosis. Our data suggest the immense potential of dioscin for the development of functional food for EC and related medical application.
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service *** this paper,we analyze the impact of vehicle movements on tas...
详细信息
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service *** this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking ***,a Bi-LSTM-based model is proposed to predict the trajectories of *** service area is divided into several equal-sized *** the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory ***,we propose a scheduling strategy for delay optimization based on the vehicle trajectory *** the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task *** results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays.
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE service...
详细信息
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the *** IoE-based cloud computing services are located at remote locations without the control of the data *** data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security *** lack of knowledge about security capabilities and control over data raises several security *** Acid(DNA)computing is a biological concept that can improve the security of IoE big *** IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher *** paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access *** experimental results illustrated that DNACDS performs better than other DNA-based security *** theoretical security analysis of the DNACDS shows better resistance capabilities.
This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to *** data from the Infr...
详细信息
This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to *** data from the Infrared Atmospheric Sounding Interfer-ometer(IASI),Generalized Additive Models(GAM),and the GEOS-Chem chemical transport model,we observed a significant increase of NH_(3)VCDs in the YRD between 2014 and *** spatial distribution analysis revealed higher NH_(3)concentrations in the northern part of the YRD region,primarily due to lower precipitation,alkaline soil,and intensive agricul-tural ***_(3)VCDs in the YRD region increased significantly(65.18%)from 2008 to *** highest growth rate occurs in the summer,with an annual average growth rate of 7.2%during the period from 2014 to *** emissions dominated NH_(3)VCDs during spring and summer,with high concentrations primarily located in the agricultural areas adjacent to densely populated urban *** within several large urban areas have been discovered to exhibit relatively stable variations in NH_(3)*** rise in NH_(3)VCDs within the YRD region was primarily driven by the reduction of acidic gases like SO_(2),as emphasized by GAM modeling and sensitivity tests using the GEOS-Chem *** concentration changes of acidic gases contribute to over 80%of the interannual variations in NH_(3)*** emphasizes the crucial role of environmental policies targeting the reduction of these acidic *** emission control is urgent tomitigate environmental hazards and secondary particulate matter,especially in the northern YRD.
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
Aiming to address significant issues like severe halo effects and excessive noise present in images processed by the traditional dark channel prior-based dehazing algorithm using fixed values, a proposed enhancement m...
详细信息
Multimodal Large Language Models have been showing their powerful ability for solving general vision-language tasks, such as image captioning, vision question answering, which usually on par with or even better than h...
详细信息
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave *** learning methods such as recurrent and convolutional neural networks have achieved good results in SWH ***,t...
详细信息
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave *** learning methods such as recurrent and convolutional neural networks have achieved good results in SWH ***,these methods do not adapt well to dynamic seasonal variations in wave *** this study,we propose a novel method—the spatiotemporal dynamic graph(STDG)neural *** method predicts the SWH of multiple nodes based on dynamic graph modeling and multi-characteristic ***,considering the dynamic seasonal variations in the wave direction over time,the network models wave dynamic spatial dependencies from long-and short-term pattern ***,to correlate multiple characteristics with SWH,the network introduces a cross-characteristic transformer to effectively fuse multiple ***,we conducted experiments on two datasets from the South China Sea and East China Sea to validate the proposed method and compared it with five prediction methods in the three *** experimental results show that the proposed method achieves the best performance at all predictive scales and has greater advantages for extreme value ***,an analysis of the dynamic graph shows that the proposed method captures the seasonal variation mechanism of the waves.
暂无评论