The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle **...
详细信息
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ***,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of *** recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a *** this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is *** Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as ***,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)***,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading ***,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
With the diversification of space-based information network task requirements and the dramatic increase in demand, the efficient scheduling of various tasks in space-based information network becomes a new challenge. ...
详细信息
With the diversification of space-based information network task requirements and the dramatic increase in demand, the efficient scheduling of various tasks in space-based information network becomes a new challenge. To address the problems of a limited number of resources and resource heterogeneity in the space-based information network, we propose a bilateral pre-processing model for tasks and resources in the scheduling pre-processing stage. We use an improved fuzzy clustering method to cluster tasks and resources and design coding rules and matching methods to match similar categories to improve the clustering effect. We propose a space-based information network task scheduling strategy based on an ant colony simulated annealing algorithm for the problems of high latency of space-based information network communication and high resource dynamics. The strategy can efficiently complete the task and resource matching and improve the task scheduling performance. The experimental results show that our proposed task scheduling strategy has less task execution time and higher resource utilization than other algorithms under the same experimental conditions. It has significantly improved scheduling performance.
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained dev...
详细信息
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained devices is a key challenge for service providers. This is especially true when underlying edge infrastructures are fault and error-prone. In this paper, we propose a fault tolerance approach named DFGP, for enforcing mobile service fault-tolerance in MEC. It synthesizes a generative optimization network(GON) model for predicting resource failure and a deep deterministic policy gradient(DDPG) model for yielding preemptive migration *** show through extensive simulation experiments that DFGP is more effective in fault detection and guaranteeing quality of service, in terms of fault detection accuracy, migration efficiency, task migration time, task scheduling time,and energy consumption than other existing methods.
The modern universitycomputer lab and kindergarden through 12th grade classrooms require a centralized solution to efficiently manage a large number of desktops. The existing solutions either bring virtualization ove...
详细信息
The modern universitycomputer lab and kindergarden through 12th grade classrooms require a centralized solution to efficiently manage a large number of desktops. The existing solutions either bring virtualization overhead in runtime or requires loading a large image over 30 GB leading to an unacceptable network latency. In this work, we propose Troy which takes advantage of the differencing virtual hard disk techniques in Windows *** such, Troy only loads the modifications made on one machine to all other machines. Troy consists of two modules that are responsible to generate an initial image and merge a differencing image with its parent image, respectively. Specifically, we identify the key fields in the virtual hard disk image that links the differencing image and the parent image and find the modified blocks in the differencing images that should be used to replace the blocks in the parent image. We further design a lazy copy solution to reduce the I/O burden in image merging. We have implemented Troy on bare metal machines. The evaluation results show that the performance of Troy is comparable to the native implementation in Windows, without requiring the Windows environment.
Constructing an effective common latent embedding by aligning the latent spaces of cross-modal variational autoencoders(VAEs) is a popular strategy for generalized zero-shot learning(GZSL). However, due to the lac...
详细信息
Constructing an effective common latent embedding by aligning the latent spaces of cross-modal variational autoencoders(VAEs) is a popular strategy for generalized zero-shot learning(GZSL). However, due to the lack of fine-grained instance-wise annotations, existing VAE methods can easily suffer from the posterior collapse problem. In this paper, we propose an innovative asymmetric VAE network by aligning enhanced feature representation(AEFR) for GZSL. Distinguished from general VAE structures, we designed two asymmetric encoders for visual and semantic observations and one decoder for visual reconstruction. Specifically, we propose a simple yet effective gated attention mechanism(GAM) in the visual encoder for enhancing the information interaction between observations and latent variables, alleviating the possible posterior collapse problem effectively. In addition, we propose a novel distributional decoupling-based contrastive learning(D2-CL) to guide learning classification-relevant information while aligning the representations at the taxonomy level in the latent representation space. Extensive experiments on publicly available datasets demonstrate the state-of-the-art performance of our method. The source code is available at https://***/seeyourmind/AEFR.
ChatGPT, an advanced language model powered by artificial intelligence, has emerged as a transformative tool in the field of education. This article explores the potential of ChatGPT in revolutionizing learning and co...
详细信息
With the rise of artificial intelligence and cloud computing, machine-learning-as-a-service platforms,such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These propriet...
详细信息
With the rise of artificial intelligence and cloud computing, machine-learning-as-a-service platforms,such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These proprietary models are vulnerable to model extraction attacks due to their commercial value. In this paper, we propose a time-efficient model extraction attack framework called Swift Theft that aims to steal the functionality of cloud-based deep neural network models. We distinguish Swift Theft from the existing works with a novel distribution estimation algorithm and reference model settings, finding the most informative query samples without querying the victim model. The selected query samples can be applied to various cloud models with a one-time selection. We evaluate our proposed method through extensive experiments on three victim models and six datasets, with up to 16 models for each dataset. Compared to the existing attacks, Swift Theft increases agreement(i.e., similarity) by 8% while consuming 98% less selecting time.
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in **...
详细信息
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in *** studies have applied cryptography tools to solve this problem by distributing trust,but they ignore the existence of *** this paper,a blockchain-based Privacy-Preserving and Collusion-Resistant scheme(PPCR)for double auctions is proposed by employing both cryptography and blockchain technology,which is the first decentralized and collusion-resistant double auction scheme that guarantees bidder anonymity and bid privacy.A two-server-based auction framework is designed to support off-chain allocation with privacy preservation and on-chain dispute resolution for collusion resistance.A Dispute Resolution agreement(DR)is provided to the auctioneer to prove that they have conducted the auction correctly and the result is fair and *** addition,a Concise Dispute Resolution protocol(CDR)is designed to handle situations where the number of accused winners is small,significantly reducing the computation cost of dispute *** experimental results confirm that PPCR can indeed achieve efficient collusion resistance and verifiability of auction results with low on-chain and off-chain computational overhead.
暂无评论