Early detection of the risk of sarcopenia at younger ages is crucial for implementing preventive strategies, fostering healthy muscle development, and minimizing the negative impact of sarcopenia on health and aging. ...
详细信息
In this paper, we propose hardware acceleration to improve a performance of scripting programming languages for embedded developments. Scripting programming languages enable more efficient software developments and sc...
详细信息
Vehicular edge computing (VEC) allows vehicles to process part of the tasks locally at the network edge while offloading the rest of the tasks to a centralized cloud server for processing. A massive volume of tasks ge...
详细信息
In blockchain networks, transactions can be transmitted through channels. The existing transmission methods depend on their routing information. If a node randomly chooses a channel to transmit a transaction, the tran...
详细信息
In blockchain networks, transactions can be transmitted through channels. The existing transmission methods depend on their routing information. If a node randomly chooses a channel to transmit a transaction, the transmission may be aborted due to insufficient funds(also called balance) or a low transmission rate. To increase the success rate and reduce transmission delay across all transactions, this work proposes a transaction transmission model for blockchain channels based on non-cooperative game *** balance, channel states, and transmission probability are fully considered. This work then presents an optimized channel transaction transmission algorithm. First, channel balances are analyzed and suitable channels are selected if their balance is sufficient. Second, a Nash equilibrium point is found by using an iterative sub-gradient method and its related channels are then used to transmit transactions. The proposed method is compared with two state-of-the-art approaches: Silent Whispers and Speedy Murmurs. Experimental results show that the proposed method improves transmission success rate, reduces transmission delay,and effectively decreases transmission overhead in comparison with its two competitive peers.
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se...
详细信息
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency ***,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this ***,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.
Multi-modal Video Object Segmentation (VOS), including RGB-Thermal, RGB-Depth, and RGB-Event, has garnered attention due to its capability to address challenging scenarios where traditional VOS methods struggle, such ...
详细信息
Generative image steganography is a technique that directly generates stego images from secret *** traditional methods,it theoretically resists steganalysis because there is no cover ***,the existing generative image ...
详细信息
Generative image steganography is a technique that directly generates stego images from secret *** traditional methods,it theoretically resists steganalysis because there is no cover ***,the existing generative image steganography methods generally have good steganography performance,but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information ***,this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping ***,the reference image is disentangled by a content and an attribute encoder to obtain content features and attribute features,***,a mean mapping rule is introduced to map the binary secret information into a noise vector,conforming to the distribution of attribute *** noise vector is input into the generator to produce the attribute transformed stego image with the content feature of the reference ***,we design an adversarial loss,a reconstruction loss,and an image diversity loss to train the proposed *** results demonstrate that the stego images generated by the proposed method are of high quality,with an average extraction accuracy of 99.4%for the hidden ***,since the stego image has a uniform distribution similar to the attribute-transformed image without secret information,it effectively resists both subjective and objective steganalysis.
Heterogeneous crowd operations involve complex procedural subtasks performed by dynamic teams with diverse agent behaviors,tailored to specific task *** of such operations include carrier aircraft support,airport grou...
Heterogeneous crowd operations involve complex procedural subtasks performed by dynamic teams with diverse agent behaviors,tailored to specific task *** of such operations include carrier aircraft support,airport ground handling,and logistics *** a hybrid virtual-physical digital twin testbed for scenario generation and plan verification in heterogeneous crowd operations addresses the issues of low credibility in virtual simulations and the high costs associated with real-world *** is becoming increasingly important in practical applications.
Images captured in low-light or underwater environments are often accompanied by significant degradation, which can negatively impact the quality and performance of downstream tasks. While convolutional neural network...
详细信息
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression ***,labeling large datasets demands significant human...
详细信息
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression ***,labeling large datasets demands significant human,time,and financial *** active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition *** issue arises because the initial labeled data often fails to represent the full spectrum of facial expression *** paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale *** method is divided into two primary ***,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction ***,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition *** the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled *** features are then weighted through a self-attention mechanism with rank ***,data from the low-weighted set is relabeled to further refine the model’s feature extraction *** pre-trained model is then utilized in active learning to select and label information-rich samples more *** results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.
暂无评论