Direct volume rendering(DVR)is a technique that emphasizes structures of interest(SOIs)within a volume visually,while simultaneously depicting adjacent regional information,e.g.,the spatial location of a structure con...
详细信息
Direct volume rendering(DVR)is a technique that emphasizes structures of interest(SOIs)within a volume visually,while simultaneously depicting adjacent regional information,e.g.,the spatial location of a structure concerning its *** DVR,transfer function(TF)plays a key role by enabling accurate identification of SOIs interactively as well as ensuring appropriate visibility of *** generation typically involves non-intuitive trial-and-error optimization of rendering parameters,which is time-consuming and *** at mitigating this manual process have led to approaches that make use of a knowledge database consisting of pre-designed TFs by domain *** these approaches,a user navigates the knowledge database to find the most suitable pre-designed TF for their input volume to visualize the *** these approaches potentially reduce the workload to generate the TFs,they,however,require manual TF navigation of the knowledge database,as well as the likely fine tuning of the selected TF to suit the *** this work,we propose a TF design approach,CBR-TF,where we introduce a new content-based retrieval(CBR)method to automatically navigate the knowledge *** of pre-designed TFs,our knowledge database contains volumes with SOI *** an input volume,our CBR-TF approach retrieves relevant volumes(with SOI labels)from the knowledge database;the retrieved labels are then used to generate and optimize TFs of the *** approach largely reduces manual TF navigation and fine *** our CBR-TF approach,we introduce a novel volumetric image feature which includes both a local primitive intensity profile along the SOIs and regional spatial semantics available from the co-planar images to the *** the regional spatial semantics,we adopt a convolutional neural network to obtain high-level image feature *** the intensity profile,we extend the dynamic time warping technique to address subtle alignment
Damage to the retinal blood vessels is critical in diabetic retinopathy, a progressively emerging health concern that often advances quietly without explicit symptoms. Optical coherence tomography-OCT has emerged as a...
详细信息
Damage to the retinal blood vessels is critical in diabetic retinopathy, a progressively emerging health concern that often advances quietly without explicit symptoms. Optical coherence tomography-OCT has emerged as a favored noninvasive imaging technique for diagnosing diabetic retinopathy promptly and accurately. However, timely and precise diagnoses from OCT images are essential in prevention of blindness. Moreover, accurate interpretation of OCT images is challenging. Single model learning debilitates in managing diverse data types and structures, constraining its adaptability to varied environments. Its limitations become apparent in tasks requiring expertise from multiple domains, delaying overall performance. Moreover, learning may exhibit susceptibility to overfitting with large and heterogeneous datasets, resulting in compromised generalization capabilities. In this study, we propose a hybrid learning model for the classification of four distinct classes of retinal diseases in OCT images with improved generalization capabilities. Our hybrid model is constructed upon the well-established architectural foundations of ResNet50 and EfficientNetB0. By pre-training the hybrid model on extensive datasets like ImageNet and then fine-tuning it on publicly available OCT image datasets, we capitalize on the strengths of both architectures. This empowers the hybrid model to excel in discerning intricate image patterns while efficiently extracting hierarchical prediction from various regions within the images. To enhance classification accuracy and mitigate overfitting, we eliminate the fully connected layer from the base model and introduce a concatenate layer to combine two objective learning prediction. A dataset comprising 84,452 OCT images, each expertly graded for illnesses. we conducted training and evaluation of our proposed model, which demonstrated superior performance compared to existing methods, achieving an impressive overall classification accuracy of 97.
The manual process of evaluating answer scripts is strenuous. Evaluators use the answer key to assess the answers in the answer scripts. Advancements in technology and the introduction of new learning paradigms need a...
详细信息
In recent years, great success has been achieved in many tasks of natural language processing (NLP), e.g., named entity recognition (NER), especially in the high-resource language, i.e., English, thanks in part to the...
详细信息
The agriculture industry's production and food quality have been impacted by plant leaf diseases in recent years. Hence, it is vital to have a system that can automatically identify and diagnose diseases at an ini...
详细信息
Time series data plays a crucial role in intelligent transportation *** flow forecasting represents a precise estimation of future traffic flow within a specific region and time *** approaches,including sequence perio...
详细信息
Time series data plays a crucial role in intelligent transportation *** flow forecasting represents a precise estimation of future traffic flow within a specific region and time *** approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series ***,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term ***,the effectiveness of existing methods diminishes in such ***,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic *** model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final *** results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios.
The current large-scale Internet of Things(IoT)networks typically generate high-velocity network traffic *** use IoT devices to create botnets and launch attacks,such as DDoS,Spamming,Cryptocurrency mining,Phishing,**...
详细信息
The current large-scale Internet of Things(IoT)networks typically generate high-velocity network traffic *** use IoT devices to create botnets and launch attacks,such as DDoS,Spamming,Cryptocurrency mining,Phishing,*** service providers of large-scale IoT networks need to set up a data pipeline to collect the vast network traffic data from the IoT devices,store it,analyze it,and report the malicious IoT devices and types of ***,the attacks originating from IoT devices are dynamic,as attackers launch one kind of attack at one time and another kind of attack at another *** number of attacks and benign instances also vary from time to *** phenomenon of change in attack patterns is called concept ***,the attack detection system must learn continuously from the ever-changing real-time attack patterns in large-scale IoT network *** meet this requirement,in this work,we propose a data pipeline with Apache Kafka,Apache Spark structured streaming,and MongoDB that can adapt to the ever-changing attack patterns in real time and classify attacks in large-scale IoT *** concept drift is detected,the proposed system retrains the classifier with the instances that cause the drift and a representative subsample instances from the previous training of the *** proposed approach is evaluated with the latest dataset,IoT23,which consists of benign and several attack instances from various IoT *** classification accuracy is improved from 97.8%to 99.46%by the proposed *** training time of distributed random forest algorithm is also studied by varying the number of cores in Apache Spark environment.
The technology of facial expression reconstruction has paved the way for various face-centric applications such as virtual reality (VR) modeling, human-computer interaction, and affective computing. Existing vision-ba...
详细信息
Depth images are often used to improve the geometric understanding of scenes owing to their intuitive distance properties. Although there have been significant advancements in semantic segmentation tasks using red-gre...
详细信息
Task scheduling, which is important in cloud computing, is one of the most challenging issues in this area. Hence, an efficient and reliable task scheduling approach is needed to produce more efficient resource employ...
详细信息
暂无评论