With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...
详细信息
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
Speculative execution attacks can leak arbitrary program data under malicious speculation,presenting a severe security *** on two key observations,this paper presents a software-transparent defense mechanism called sp...
详细信息
Speculative execution attacks can leak arbitrary program data under malicious speculation,presenting a severe security *** on two key observations,this paper presents a software-transparent defense mechanism called speculative secret flow tracking(SSFT),which is capable of defending against all cache-based speculative execution attacks with a low performance ***,we observe that the attacker must use array or pointer variables in the victim code to access arbitrary memory ***,we propose a strict definition of secret data to reduce the amount of data to be ***,if the load is not data-dependent and control-dependent on secrets,its speculative execution will not leak any ***,this paper introduces the concept of speculative secret flow to analyze how secret data are obtained and propagated during speculative *** tracking speculative secret flow in hardware,SSFT can identify all unsafe speculative loads(USLs)that are dependent on ***,SSFT exploits three different methods to constrain USLs’speculative execution and prevent them from leaking secrets into the cache and translation lookaside buffer(TLB)*** paper evaluates the performance of SSFT on the SPEC CPU 2006 workloads,and the results show that SSFT is effective and its performance overhead is very *** defend against all speculative execution attack variants,SSFT only incurs an average slowdown of 4.5%(Delay USL-L1Miss)or 3.8%(Invisible USLs)compared to a non-secure *** analysis also shows that SSFT maintains a low hardware overhead.
By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)*** vast heterogeneous data increase the...
详细信息
By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)*** vast heterogeneous data increase the challenges of security risks and data analysis *** IIoT grows,cyber-attacks become more diverse and complex,making existing anomaly detection models less effective to *** this paper,an ensemble deep learning model that uses the benefits of the Long Short-Term Memory(LSTM)and the AutoEncoder(AE)architecture to identify out-of-norm activities for cyber threat hunting in IIoT is *** this model,the LSTM is applied to create a model on normal time series of data(past and present data)to learn normal data patterns and the important features of data are identified by AE to reduce data *** addition,the imbalanced nature of IIoT datasets has not been considered in most of the previous literature,affecting low accuracy and *** solve this problem,the proposed model extracts new balanced data from the imbalanced datasets,and these new balanced data are fed into the deep LSTM AE anomaly detection *** this paper,the proposed model is evaluated on two real IIoT datasets-Gas Pipeline(GP)and Secure Water Treatment(SWaT)that are imbalanced and consist of long-term and short-term dependency on *** results are compared with conventional machine learning classifiers,Random Forest(RF),Multi-Layer Perceptron(MLP),Decision Tree(DT),and Super Vector Machines(SVM),in which higher performance in terms of accuracy is obtained,99.3%and 99.7%based on GP and SWaT datasets,***,the proposed ensemble model is compared with advanced related models,including Stacked Auto-Encoders(SAE),Naive Bayes(NB),Projective Adaptive Resonance Theory(PART),Convolutional Auto-Encoder(C-AE),and Package Signatures(PS)based LSTM(PS-LSTM)model.
This paper presents a photonic scheme for generating multi-format, multi-band, and reconfigurable microwave photonic signals through cascaded external modulation. The proposed system utilize dual-parallel Mach–Zehnde...
详细信息
A Blockchain is a trustworthy, immutable, decentralized database system that functions in different nodes. During the age of decentralized networks and large datasets, the confluence of Blockchain with Intelligent Mac...
详细信息
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection m...
详细信息
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection model using a Deep Convolutional Neural Network(D-CNN).The proposed Faster R-CNN(Faster Region-Based CNN)models are trained with Morphological *** proposed Faster R-CNN model is trained using the augmented *** overcoming the Imbalanced Data problem,data augmentation techniques are *** Faster R-CNN performance was com-pared with existing transfer learning *** results show that the Faster R-CNN performance was significant than other *** number of images in each class is *** example,the Neutrophil(segmented)class consists of 8,486 images,and Lymphocyte(atypical)class consists of eleven *** dataset is used to train the CNN for single-cell morphology classifi*** proposed work implies the high-class performance server called Nvidia Tesla V100 GPU(Graphics processing unit).
Fraud Transactions are haunting the economy of many individuals with several factors across the *** research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the...
详细信息
Fraud Transactions are haunting the economy of many individuals with several factors across the *** research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital *** research proposes a novel methodology through three ***,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced ***,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature *** has performed well when compared with the other ***,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and *** efficiency of BinHHO is analyzed with other popular MH *** BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model.
In the insurance sector, a massive volume of data is being generatedon a daily basis due to a vast client base. Decision makers and businessanalysts emphasized that attaining new customers is costlier than retainingex...
详细信息
In the insurance sector, a massive volume of data is being generatedon a daily basis due to a vast client base. Decision makers and businessanalysts emphasized that attaining new customers is costlier than retainingexisting ones. The success of retention initiatives is determined not only bythe accuracy of forecasting churners but also by the timing of the *** works on churn forecast presented models for anticipating churnquarterly or monthly with an emphasis on customers’ static behavior. Thispaper’s objective is to calculate daily churn based on dynamic variations inclient behavior. Training excellent models to further identify potential churningcustomers helps insurance companies make decisions to retain customerswhile also identifying areas for improvement. Thus, it is possible to identifyand analyse clients who are likely to churn, allowing for a reduction in thecost of support and maintenance. Binary Golden Eagle Optimizer (BGEO)is used to select optimal features from the datasets in a preprocessing *** a result, this research characterized the customer’s daily behavior usingvarious models such as RFM (Recency, Frequency, Monetary), MultivariateTime Series (MTS), Statistics-based Model (SM), Survival analysis (SA),Deep learning (DL) based methodologies such as Recurrent Neural Network(RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),and Customized Extreme Learning Machine (CELM) are framed the problemof daily forecasting using this description. It can be concluded that all modelsproduced better overall outcomes with only slight variations in performancemeasures. The proposed CELM outperforms all other models in terms ofaccuracy (96.4).
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictiv...
详细信息
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictive results. However, existing time prediction methods based on deep learning have poor interpretability, an explainable business process remaining time prediction method is proposed using reachability graph,which consists of prediction model construction and visualization. For prediction models, a Petri net is mined and the reachability graph is constructed to obtain the transition occurrence vector. Then, prefixes and corresponding suffixes are generated to cluster into different transition partitions according to transition occurrence vector. Next,the bidirectional recurrent neural network with attention is applied to each transition partition to encode the prefixes, and the deep transfer learning between different transition partitions is performed. For the visualization of prediction models, the evaluation values are added to the sub-processes of a Petri net to realize the visualization of the prediction models. Finally, the proposed method is validated by publicly available event logs.
In recent days,Deep Learning(DL)techniques have become an emerging transformation in the field of machine learning,artificial intelligence,computer vision,and so ***,researchers and industries have been highly endorse...
详细信息
In recent days,Deep Learning(DL)techniques have become an emerging transformation in the field of machine learning,artificial intelligence,computer vision,and so ***,researchers and industries have been highly endorsed in the medical field,predicting and controlling diverse diseases at specific *** tumor prediction is a vital chore in analyzing and treating liver *** paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks(CNN)and a depth-based variant search algorithm with advanced attention mechanisms(CNN-DS-AM).The proposed work aims to improve accuracy and robustness in diagnosing and treating liver *** anticipated model is assessed on a Computed Tomography(CT)scan dataset containing both benign and malignant liver *** proposed approach achieved high accuracy in predicting liver tumors,outperforming other state-of-the-art ***,advanced attention mechanisms were incorporated into the CNN model to enable the identification and highlighting of regions of the CT scans most relevant to predicting liver *** results suggest that incorporating attention mechanisms and a depth-based variant search algorithm into the CNN model is a promising approach for improving the accuracy and robustness of liver tumor *** can assist radiologists in their diagnosis and treatment *** proposed system achieved a high accuracy of 95.5%in predicting liver tumors,outperforming other state-of-the-art methods.
暂无评论