Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1...
详细信息
Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1], [2].
With the development of artificial intelligence, deep learning has been increasingly used to achieve automatic detection of geographic information, replacing manual interpretation and improving efficiency. However, re...
详细信息
Deep neural networks (DNNs) are crucial in autonomous driving systems (ADSs) for tasks like steering control, but model inaccuracies, biased training data, and incorrect runtime parameters can compromise their reliabi...
详细信息
Deep neural networks (DNNs) are crucial in autonomous driving systems (ADSs) for tasks like steering control, but model inaccuracies, biased training data, and incorrect runtime parameters can compromise their reliability. Metamorphic testing (MT) enhances reliability by generating follow-up tests from mutated DNN source inputs, identifying inconsistencies as defects. Various MT techniques for ADSs include generative/transfer models, neuron-based coverage maximization, and adaptive test selection. Despite these efforts, significant challenges remain, including the ambiguity of neuron coverage’s correlation with misbehaviour detection, a lack of focus on DNN critical pathways, inadequate use of search-based methods, and the absence of an integrated method that effectively selects sources and generates follow-ups. This paper addresses such challenges by introducing DeepDomain, a grey-box multi-objective test generation approach for DNN models. It involves adaptively selecting diverse source inputs and generating domain-oriented follow-up tests. Such follow-ups explore critical pathways, extracted by neuron contribution, with broader coverage compared to their source tests (inter-behavioural domain) and attaining high neural boundary coverage of the misbehaviour regions detected in previous follow-ups (intra-behavioural domain). An empirical evaluation of the proposed approach on three DNN models used in the Udacity self-driving car challenge, and 18 different MRs demonstrates that relying on behavioural domain adequacy is a more reliable indicator than coverage criteria for effectively guiding the testing of DNNs. Additionally, DeepDomain significantly outperforms selected baselines in misbehaviour detection by up to 94 times, fault-revealing capability by up to 79%, output diversity by 71%, corner-case detection by up to 187 times, identification of robustness subdomains of MRs by up to 33 percentage points, and naturalness by two times. The results confirm that stat
Detecting dangerous driving behavior is a critical research area focused on identifying and preventing actions that could lead to traffic accidents, such as smoking, drinking, yawning, and drowsiness, through technica...
详细信息
Federated Learning (FL) provides a valuable framework that allows for the collaborative training of models across distributed networks while maintaining the privacy of the data involved. The concept of secure aggregat...
详细信息
In recent years, great success has been achieved in many tasks of natural language processing (NLP), e.g., named entity recognition (NER), especially in the high-resource language, i.e., English, thanks in part to the...
详细信息
This paper investigates an unmanned aerial vehicle(UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything(V2X)*** to the presence of an eavesdropper(Eve),the system’s com-munication...
详细信息
This paper investigates an unmanned aerial vehicle(UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything(V2X)*** to the presence of an eavesdropper(Eve),the system’s com-munication links may be *** paper proposes deploying an intelligent reflecting surface(IRS)on the UAV to enhance the communication performance of mobile vehicles,improve system flexibility,and alleviate eavesdropping on communication *** links for uploading task data from vehicles to a base station(BS)are protected by IRS-assisted physical layer security(PLS).Upon receiving task data,the computing resources provided by the edge computing servers(MEC)are allocated to vehicles for task *** blockchain-based computation offloading schemes typically focus on improving network performance,such as minimizing energy consumption or latency,while neglecting the Gas fees for computation offloading and the costs required for MEC computation,leading to an imbalance between service fees and resource *** paper uses a utility-oriented computation offloading scheme to balance costs and *** paper proposes alternating phase optimization and power optimization to optimize the energy consumption,latency,and communication secrecy rate,thereby maximizing the weighted total utility of the *** results demonstrate a notable enhancement in the weighted total system utility and resource utilization,thereby corroborating the viability of our approach for practical applications.
Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution rea...
详细信息
Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the *** employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final *** a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be *** acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air ***,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.
In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the *** transmission performance of blocks in the form of finite character segments is also affect...
详细信息
In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the *** transmission performance of blocks in the form of finite character segments is also affected by the block ***,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving *** paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during *** our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source *** the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length ***,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization ***,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems *** simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain.
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractab...
详细信息
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals make performance *** mainstream methods apply heuristic reward functions to counter this ***,the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and unrelated object *** this end,we propose a novel adaptive Inverse Reinforcement Learning(IRL)framework for multi-hop reasoning,called AInvR.(1)To counter the missing and spurious paths,we replace the heuristic rule rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories;(2)to alleviate the impact of over-rewarded object entities misled by inaccurate reward shaping and rules,we propose an adaptive negative hit reward learning mechanism based on agent’s sampling strategy;(3)to further explore diverse paths and mitigate the influence of missing facts,we design a reward dropout mechanism to randomly mask and perturb reward parameters for the reward learning *** results on several benchmark knowledge graphs demonstrate that our method is more effective than existing multi-hop approaches.
暂无评论