Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractab...
详细信息
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals make performance *** mainstream methods apply heuristic reward functions to counter this ***,the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and unrelated object *** this end,we propose a novel adaptive Inverse Reinforcement Learning(IRL)framework for multi-hop reasoning,called AInvR.(1)To counter the missing and spurious paths,we replace the heuristic rule rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories;(2)to alleviate the impact of over-rewarded object entities misled by inaccurate reward shaping and rules,we propose an adaptive negative hit reward learning mechanism based on agent’s sampling strategy;(3)to further explore diverse paths and mitigate the influence of missing facts,we design a reward dropout mechanism to randomly mask and perturb reward parameters for the reward learning *** results on several benchmark knowledge graphs demonstrate that our method is more effective than existing multi-hop approaches.
Safety equipment detection is an important application of object detection, receiving widespread attention in fields such as smart construction sites and video surveillance. Significant progress has been made in objec...
详细信息
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web ...
详细信息
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a *** emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of *** a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage ***,the question of how to determine the most suitable mashups from big data has become a challenging *** this paper,we propose a mashup recommendation framework from big data in mobile networks and the *** proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix *** employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the *** also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization *** then crawl through a real-world large mashup dataset and perform *** experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-ti...
详细信息
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference(EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time(WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the stateof-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.
Edge-cloud computing integrating the advantages of edge and cloud to provide high-quality services for mobile users is one of the hotspots recently. However, the increasing number of applications brings various tasks ...
详细信息
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural languag...
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural language processing tasks,but also captured widespread attention from the public due to their great potential in a variety of real-world applications (***,search engines,writing assistants,etc.)through providing general-purpose intelligent services.A few of the LLMs are becoming foundation models,an analogy to infrastructure,that empower hundreds of downstream applications.
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcoming...
详细信息
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcomings in the MECPE task: 1) it ignores emotion utterances whose causes cannot be located in the conversation but require contextualized inference;2) it fails to locate the exact causes that occur in vision or audio modalities beyond text. To address these issues, in this paper, we introduce a new task named Multimodal Emotion-Cause Pair Generation in Conversations (MECPG), which aims to identify the emotion utterances with their emotion categories and generate their corresponding causes in a conversation. To tackle the MECPG task, we construct a dataset based on a benchmark corpus for MECPE. We further propose a generative framework named MONICA, which jointly performs emotion recognition and emotion cause generation with a sequence-to-sequence model. Experiments on our annotated dataset show the superiority of MONICA over several competitive systems. Our dataset and source codes will be publicly released. IEEE
SaaS (Software-as-a-Service) is a service model provided by cloud computing. It has a high requirement for QoS (Quality of Software) due to its method of providing software service. However, manual identification and ...
详细信息
SaaS (Software-as-a-Service) is a service model provided by cloud computing. It has a high requirement for QoS (Quality of Software) due to its method of providing software service. However, manual identification and diagnosis for performance issues is typically expensive and laborious because of the complexity of the application software and the dynamic nature of the deployment environment. Recently, substantial research efforts have been devoted to automatically identifying and diagnosing performance issues of SaaS software. In this survey, we comprehensively review the different methods about automatically identifying and diagnosing performance issues of SaaS software. We divide them into three steps according to their function: performance log generation, performance issue identification and performance issue diagnosis. We then comprehensively review these methods by their development history. Meanwhile, we give our proposed solution for each step. Finally, the effectiveness of our proposed methods is shown by experiments.
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is ...
详细信息
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic *** recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic ***,most models ignore the semantic spatial similarity between long-distance areas when mining spatial *** also ignore the impact of predicted time steps on the next unpredicted time step for making long-term ***,these models lack a comprehensive data embedding process to represent complex spatiotemporal *** paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in *** adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these *** model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic *** spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term *** on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved...
详细信息
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.
暂无评论