Iris biometrics allow contactless authentication, which makes it widely deployed human recognition mechanisms since the couple of years. Susceptibility of iris identification systems remains a challenging task due to ...
详细信息
Open-vocabulary object detection (OVD) models are considered to be Large Multi-modal Models (LMM), due to their extensive training data and a large number of parameters. Mainstream OVD models prioritize object coarse-...
详细信息
Decentralized Anonymous Payment Systems (DAP), often known as cryptocurrencies, stand out as some of the most innovative and successful applications on the blockchain. These systems have garnered significant attention...
详细信息
Deep Learning has recently been in trend when it comes to medical image analysis as it uses Convolution Neural Network (CNN), which utilizes multi-layer processing to extract intricate and complex features from the da...
详细信息
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon ...
详细信息
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon caused by the imprecise compensation of the time-varying reference input, a novel time-varying event-triggered piecewise continuous control law and a triggering mechanism with a time-varying triggering function are developed. Second, an explicit integral input-to-state stable Lyapunov function is constructed for the time-varying closed-loop system regarding the sampling error as the external input. The origin of the closed-loop system is shown to be uniformly globally asymptotically stable for any global exponential decaying threshold signals, which in turn rules out the Zeno behavior. Moreover, infinitely fast sampling can be avoided by appropriately tuning the exponential convergence rate of the threshold signal. A numerical simulation example is provided to illustrate the proposed control approach.
Advanced Driver Assistance Systems (ADAS) are designed to prevent collisions, identify the condition of drivers while operating vehicles, and provide additional information to enhance drivers' awareness of potenti...
详细信息
In practical abnormal traffic detection scenarios,traffic often appears as drift,imbalanced and rare labeled streams,and how to effectively identify malicious traffic in such complex situations has become a challenge ...
详细信息
In practical abnormal traffic detection scenarios,traffic often appears as drift,imbalanced and rare labeled streams,and how to effectively identify malicious traffic in such complex situations has become a challenge for malicious traffic *** have extensive studies on malicious traffic detection with single challenge,but the detection of complex traffic has not been widely *** adaptive random forests(QARF) is proposed to detect traffic streams with concept drift,imbalance and lack of labeled *** is an online active learning based approach which combines adaptive random forests method and adaptive margin sampling *** achieves querying a small number of instances from unlabeled traffic streams to obtain effective *** conduct experiments using the NSL-KDD dataset to evaluate the performance of *** is compared with other state-of-the-art *** experimental results show that QARF obtains 98.20% accuracy on the NSL-KDD *** performs better than other state-of-the-art methods in comparisons.
Damage to the retinal blood vessels is critical in diabetic retinopathy, a progressively emerging health concern that often advances quietly without explicit symptoms. Optical coherence tomography-OCT has emerged as a...
详细信息
Damage to the retinal blood vessels is critical in diabetic retinopathy, a progressively emerging health concern that often advances quietly without explicit symptoms. Optical coherence tomography-OCT has emerged as a favored noninvasive imaging technique for diagnosing diabetic retinopathy promptly and accurately. However, timely and precise diagnoses from OCT images are essential in prevention of blindness. Moreover, accurate interpretation of OCT images is challenging. Single model learning debilitates in managing diverse data types and structures, constraining its adaptability to varied environments. Its limitations become apparent in tasks requiring expertise from multiple domains, delaying overall performance. Moreover, learning may exhibit susceptibility to overfitting with large and heterogeneous datasets, resulting in compromised generalization capabilities. In this study, we propose a hybrid learning model for the classification of four distinct classes of retinal diseases in OCT images with improved generalization capabilities. Our hybrid model is constructed upon the well-established architectural foundations of ResNet50 and EfficientNetB0. By pre-training the hybrid model on extensive datasets like ImageNet and then fine-tuning it on publicly available OCT image datasets, we capitalize on the strengths of both architectures. This empowers the hybrid model to excel in discerning intricate image patterns while efficiently extracting hierarchical prediction from various regions within the images. To enhance classification accuracy and mitigate overfitting, we eliminate the fully connected layer from the base model and introduce a concatenate layer to combine two objective learning prediction. A dataset comprising 84,452 OCT images, each expertly graded for illnesses. we conducted training and evaluation of our proposed model, which demonstrated superior performance compared to existing methods, achieving an impressive overall classification accuracy of 97.
The vast majority of neural network-based dehazing algorithms learn the mapping relationship between hazy and clear images by employing paired haze datasets to produce image dehazing. However, the distribution pattern...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained ...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification ***,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the *** address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature ***,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective *** continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network *** results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.
暂无评论