In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems,...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, and selfdriving capabilities for improved system performance. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
The rapid acceleration of urbanization and industrialization has led to a significant increase in PM2.5 pollution, making it a critical global concern. The accurate prediction of PM2.5 concentrations is of utmost impo...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relativ...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relatively time-consuming but also cannot provide representative complete shape features based on partial *** this paper,a novel feature alignment fast point cloud completion network(FACNet)is proposed to directly and efficiently generate the detailed shapes of *** aligns high-dimensional feature distributions of both partial and complete point clouds to maintain global information about the complete *** its decoding process,the local features from the partial point cloud are incorporated along with the maintained global information to ensure complete and time-saving generation of the complete point *** results show that FACNet outperforms the state-of-theart on PCN,Completion3D,and MVP datasets,and achieves competitive performance on ShapeNet-55 and KITTI ***,FACNet and a simplified version,FACNet-slight,achieve a significant speedup of 3–10 times over other state-of-the-art methods.
The article addresses the output-feedback control issue for a class of multi-input multi-output(MIMO)uncertain nonlinear systems with multiple event-triggered mechanisms(ETM).Compared to previous event-triggering stud...
详细信息
The article addresses the output-feedback control issue for a class of multi-input multi-output(MIMO)uncertain nonlinear systems with multiple event-triggered mechanisms(ETM).Compared to previous event-triggering studies,this paper aims to trigger both the output and filtered *** nonlinear dynamics are approximated using fuzzy logic systems(FLSs).Then,a novel kind of state observer has been designed to deal with unmeasurable state problems using the triggered output *** sampled estimated state,the triggered output signal,and the filtered signal are utilized to propose an event-triggering mechanism that consists of sensor-to-observer(SO)and observer-to-controller(OC).An event-triggered output feedback control approach is given inside backstepping control,whereby the filter may be employed to circumvent the issue of the virtual control function not being differentiable at the trigger *** is testified that,according to the Lyapunov stability analysis scheme,all closed-loop signals and the system output are ultimately uniformly constrained by our control ***,the simulation examples are performed to confirm the theoretical findings.
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the...
详细信息
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the owner to lose control of the *** a result,there are issues of intentional data leakage and tampering by third parties,and the private information contained in the data may lead to more significant ***,data is frequently maintained on multiple storage platforms,posing significant hurdles in terms of enlisting multiple parties to engage in data sharing while maintaining *** this work,we propose a new architecture for applying blockchains to data sharing and achieve efficient and reliable data sharing among heterogeneous *** design a new data sharing transaction mechanism based on the system architecture to protect the security of the raw data and the processing *** also design and implement a hybrid concurrency control protocol to overcome issues caused by the large differences in blockchain performance in our system and to improve the success rate of data sharing *** took Ethereum and Hyperledger Fabric as examples to conduct crossblockchain data sharing *** results show that our system achieves data sharing across heterogeneous blockchains with reasonable performance and has high scalability.
With the prosperity of the mobile Internet, the abundance of data makes it difficult for users to choose their favorite app. Thus, mobile app recommendation as an emerging topic attracts lots of attention. However, ex...
详细信息
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric *** overcome the imbalance of existing methods between multi-scale feature fusio...
详细信息
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric *** overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical *** correlation analysis is first employed to identify SOC-related *** parameters are then input into a multi-layer GRU for point-wise feature ***,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time ***,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are *** extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.
Methanol steam reforming (MSR) is an attractive way to supply hydrogen applied for proton exchange membrane fuel cells. However, there is still a challenge in designing high-activity, low CO selectivity and durable co...
详细信息
The effectiveness of modeling contextual information has been empirically shown in numerous computer vision tasks. In this paper, we propose a simple yet efficient augmented fully convolutional network(AugFCN) by aggr...
详细信息
The effectiveness of modeling contextual information has been empirically shown in numerous computer vision tasks. In this paper, we propose a simple yet efficient augmented fully convolutional network(AugFCN) by aggregating content-and position-based object contexts for semantic ***, motivated because each deep feature map is a global, class-wise representation of the input,we first propose an augmented nonlocal interaction(AugNI) to aggregate the global content-based contexts through all feature map interactions. Compared to classical position-wise approaches, AugNI is more efficient. Moreover, to eliminate permutation equivariance and maintain translation equivariance, a learnable,relative position embedding branch is then supportably installed in AugNI to capture the global positionbased contexts. AugFCN is built on a fully convolutional network as the backbone by deploying AugNI before the segmentation head network. Experimental results on two challenging benchmarks verify that AugFCN can achieve a competitive 45.38% mIoU(standard mean intersection over union) and 81.9% mIoU on the ADE20K val set and Cityscapes test set, respectively, with little computational overhead. Additionally, the results of the joint implementation of AugNI and existing context modeling schemes show that AugFCN leads to continuous segmentation improvements in state-of-the-art context modeling. We finally achieve a top performance of 45.43% mIoU on the ADE20K val set and 83.0% mIoU on the Cityscapes test set.
Medical image segmentation plays an important role in computer-aid diagnosis. In the past years, convolutional neural networks, especially the UNet-based architectures with symmetric U-shape encoder-decoder structure ...
详细信息
暂无评论