This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition ***,a new type of two-dimensional hyperchaotic system based ...
详细信息
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition ***,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic *** on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is ***,two classical plaintext images are transformed into quantum states using the DNEQR ***,the proposed hyperchaotic system is employed to iteratively generate pseudo-random *** chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and ***,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random *** corresponding quantum circuits are also *** results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
As a complex hot problem in the financial field,stock trend forecasting uses a large amount of data and many related indicators;hence it is difficult to obtain sustainable and effective results only by relying on empi...
详细信息
As a complex hot problem in the financial field,stock trend forecasting uses a large amount of data and many related indicators;hence it is difficult to obtain sustainable and effective results only by relying on empirical *** in the field of machine learning have proved that random forest can form better judgements on this kind of problem,and it has an auxiliary role in the prediction of stock *** study uses historical trading data of four listed companies in the USA stock market,and the purpose of this study is to improve the performance of random forest model in medium-and long-term stock trend *** study applies the exponential smoothing method to process the initial data,calculates the relevant technical indicators as the characteristics to be selected,and proposes the D-RF-RS method to optimize random *** the random forest is an ensemble learning model and is closely related to decision tree,D-RF-RS method uses a decision tree to screen the importance of features,and obtains the effective strong feature set of the model as ***,the parameter combination of the model is optimized through random parameter *** experimental results show that the average accuracy of random forest is increased by 0.17 after the above process optimization,which is 0.18 higher than the average accuracy of light gradient boosting machine *** with the performance of the ROC curve and Precision–Recall curve,the stability of the model is also guaranteed,which further demonstrates the advantages of random forest in medium-and long-term trend prediction of the stock market.
Blockchain technology has the characteristics of non-tampering and forgery, traceability, and so on, which have good application advantages for the storage of multimedia data. So we propose a novel method using matrix...
详细信息
Task scheduling, which is important in cloud computing, is one of the most challenging issues in this area. Hence, an efficient and reliable task scheduling approach is needed to produce more efficient resource employ...
详细信息
In the realm of medical diagnostics, particularly in differential diagnosis, where differentiating between illnesses or ailments with comparable symptoms is essential, deep learning has gained importance. Recent devel...
详细信息
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in...
详细信息
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in which, there is a challenge for viewers to extract comprehensive recipes from lengthy visual content. Effective summary is necessary in order to translate the abundance of culinary knowledge found in videos into text recipes that are easy to read and follow. This will make the cooking process easier for individuals who are searching for precise step by step cooking instructions. Such a system satisfies the needs of a broad spectrum of learners while also improving accessibility and user simplicity. As there is a growing need for easy-to-follow recipes made from cooking videos, researchers are looking on the process of automated summarization using advanced techniques. One such approach is presented in our work, which combines simple image-based models, audio processing, and GPT-based models to create a system that makes it easier to turn long culinary videos into in-depth recipe texts. A systematic workflow is adopted in order to achieve the objective. Initially, Focus is given for frame summary generation which employs a combination of two convolutional neural networks and a GPT-based model. A pre-trained CNN model called Inception-V3 is fine-tuned with food image dataset for dish recognition and another custom-made CNN is built with ingredient images for ingredient recognition. Then a GPT based model is used to combine the results produced by the two CNN models which will give us the frame summary in the desired format. Subsequently, Audio summary generation is tackled by performing Speech-to-text functionality in python. A GPT-based model is then used to generate a summary of the resulting textual representation of audio in our desired format. Finally, to refine the summaries obtained from visual and auditory content, Another GPT-based model is used
Iris biometrics allow contactless authentication, which makes it widely deployed human recognition mechanisms since the couple of years. Susceptibility of iris identification systems remains a challenging task due to ...
详细信息
To address the problem of inaccurate prediction of slab quality in continuous casting, an algorithm based on particle swarm optimisation and differential evolution is proposed. The algorithm combines BP neural network...
详细信息
The self-cascade(SC) method is an effective technique for chaos enhancement and complexity increasing in chaos ***, the controllable self-cascade(CSC) method allows for more accurate control of Lyapunov exponents of t...
详细信息
The self-cascade(SC) method is an effective technique for chaos enhancement and complexity increasing in chaos ***, the controllable self-cascade(CSC) method allows for more accurate control of Lyapunov exponents of the discrete map. In this work, the SC and CSC systems of the original map are derived, which enhance the chaotic performance while preserving the fundamental dynamical characteristics of the original map. Higher Lyapunov exponent of chaotic sequences corresponding to higher frequency are obtained in SC and CSC systems. Meanwhile, the Lyapunov exponent could be linearly controlled with greater flexibility in the CSC system. The verification of the numerical simulation and theoretical analysis is carried out based on the platform of CH32.
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classific...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classification (BTSC) has gained more attention among researcher communities. BTSC is the process of finding brain tumor tissues and classifying the tissues based on the tumor types. Manual tumor segmentation from is prone to error and a time-consuming task. A precise and fast BTSC model is developed in this manuscript based on a transfer learning-based Convolutional Neural Networks (CNN) model. The utilization of a variant of CNN is because of its superiority in distinct tasks. In the initial phase, the Magnetic Resonance Imaging (MRI) brain images are acquired from the Brain Tumor Image Segmentation Challenge (BRATS) 2019, 2020 and 2021 databases. Then the image augmentation is performed on the gathered images by using zoom-in, rotation, zoom-out, flipping, scaling, and shifting methods that effectively reduce overfitting issues in the classification model. The augmented images are segmented using the layers of the Visual-Geometry-Group (VGG-19) model. Then feature extraction using An Attribute Aware Attention (AWA) methodology is carried out on the segmented images following the segmentation block in the VGG-19 model. The crucial features are then selected using the attribute category reciprocal attention phase. These features are inputted to the Model Agnostic Concept Extractor (MACE) to generate the relevance score between the features for assisting in the final classification process. The obtained relevance scores from the MACE are provided to the max-pooling layer of the VGG-19 model. Then, the final classified output is obtained from the modified VGG-19 architecture. The implemented Relevance score with the AWA-based VGG-19 model is used to classify the tumor as the whole tumor, enhanced tumor, and tumor core. In the classification section, the proposed
暂无评论