Software trustworthiness is an essential criterion for evaluating software quality. In componentbased software, different components play different roles and different users give different grades of trustworthiness af...
详细信息
Software trustworthiness is an essential criterion for evaluating software quality. In componentbased software, different components play different roles and different users give different grades of trustworthiness after using the software. The two elements will both affect the trustworthiness of software. When the software quality is evaluated comprehensively, it is necessary to consider the weight of component and user feedback. According to different construction of components, the different trustworthiness measurement models are established based on the weight of components and user feedback. Algorithms of these trustworthiness measurement models are designed in order to obtain the corresponding trustworthiness measurement value automatically. The feasibility of these trustworthiness measurement models is demonstrated by a train ticket purchase system.
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from l...
详细信息
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from large plants to consumers, faced challenges in efficiency, reliability, and scalability. Over time, the grid has transformed into a decentralized network driven by innovative technologies, particularly artificial intelligence (AI). AI has become instrumental in enhancing efficiency, security, and resilience by enabling real-time data analysis, predictive maintenance, demand-response optimization, and automated fault detection, thereby improving overall operational efficiency. This paper examines the evolution of the electrical grid, tracing its transition from early limitations to the methodologies adopted in present smart grids for addressing those challenges. Current smart grids leverage AI to optimize energy management, predict faults, and seamlessly integrate electric vehicles (EVs), reducing transmission losses and improving performance. However, these advancements are not without limitations. Present grids remain vulnerable to cyberattacks, necessitating the adoption of more robust methodologies and advanced technologies for future grids. Looking forward, emerging technologies such as Digital Twin (DT) models, the Internet of Energy (IoE), and decentralized grid management are set to redefine grid architectures. These advanced technologies enable real-time simulations, adaptive control, and enhanced human–machine collaboration, supporting dynamic energy distribution and proactive risk management. Integrating AI with advanced energy storage, renewable resources, and adaptive access control mechanisms will ensure future grids are resilient, sustainable, and responsive to growing energy demands. This study emphasizes AI’s transformative role in addressing the challenges of the early grid, enhancing the capabilities of the present smart grid, and shaping a secure
Multi-image steganography refers to a data-hiding scheme where a user tries to hide confidential messages within multiple images. Different from the traditional steganography which only requires the security of an ind...
详细信息
Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information ***,these approaches have some *** example,a cover image lacks self-adaptability,inform...
详细信息
Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information ***,these approaches have some *** example,a cover image lacks self-adaptability,information leakage,or weak *** address these issues,this study proposes a universal and adaptable image-hiding ***,a domain attention mechanism is designed by combining the Atrous convolution,which makes better use of the relationship between the secret image domain and the cover image ***,to improve perceived human similarity,perceptual loss is incorporated into the training *** experimental results are promising,with the proposed method achieving an average pixel discrepancy(APD)of 1.83 and a peak signal-to-noise ratio(PSNR)value of 40.72 dB between the cover and stego images,indicative of its high-quality ***,the structural similarity index measure(SSIM)reaches 0.985 while the learned perceptual image patch similarity(LPIPS)remarkably registers at ***,self-testing and cross-experiments demonstrate the model’s adaptability and generalization in unknown hidden spaces,making it suitable for diverse computer vision tasks.
Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted considerable critical attention due to its importance in many real-world applications, e.g., agr...
详细信息
Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted considerable critical attention due to its importance in many real-world applications, e.g., agriculture, remote sensing, and space technologies. Predominant research efforts tackle these fine-grained sub-tasks following different paradigms, while the inherent relations between these tasks are neglected. Moreover, given most of the research remains fragmented, we conduct an in-depth study of the advanced work from a new perspective of learning the part relationship. In this perspective, we first consolidate recent research and benchmark syntheses with new taxonomies. Based on this consolidation, we revisit the universal challenges in fine-grained part segmentation and recognition tasks and propose new solutions by part relationship learning for these important challenges. Furthermore, we conclude several promising lines of research in fine-grained visual parsing for future research.
Solar cell defect detection is crucial for quality inspection in photovoltaic power generation *** the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it challengin...
详细信息
Solar cell defect detection is crucial for quality inspection in photovoltaic power generation *** the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it challenging to collect defective ***,the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective *** paper proposes a novel Lightweight Multiscale Feature Fusion network(LMFF)to address these *** network comprises a feature extraction network,a multi-scale feature fusion module(MFF),and a segmentation ***,a feature extraction network is proposed to obtain multi-scale feature outputs,and a multi-scale feature fusion module(MFF)is used to fuse multi-scale feature information *** order to capture finer-grained multi-scale information from the fusion features,we propose a multi-scale attention module(MSA)in the segmentation network to enhance the network’s ability for small target ***,depthwise separable convolutions are introduced to construct depthwise separable residual blocks(DSR)to reduce the model’s parameter ***,to validate the proposed method’s defect segmentation and localization performance,we constructed three solar cell defect detection datasets:SolarCells,SolarCells-S,and *** and SolarCells-S are monocrystalline silicon datasets,and PVEL-S is a polycrystalline silicon *** results show that the IOU of our method on these three datasets can reach 68.5%,51.0%,and 92.7%,respectively,and the F1-Score can reach 81.3%,67.5%,and 96.2%,respectively,which surpasses other commonly usedmethods and verifies the effectiveness of our LMFF network.
Emerging technologies of Agriculture 4.0 such as the Internet of Things (IoT), Cloud Computing, Artificial Intelligence (AI), and 5G network services are being rapidly deployed to address smart farming implementation-...
详细信息
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lac...
详细信息
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19 style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task. Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the gap between NMT outputs and the formality required in various real-world translation scenarios.
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security pr...
详细信息
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security problems brought by the mobile *** for Android system,due to its open source nature,malicious applications continue to emerge,which greatly threatens the data security of ***,this paper proposes a method of trusted embedded static measurement and data transmission protection architecture based on Android to reduce the risk of data leakage in the process of terminal storage and *** conducted detailed data and feasibility analysis of the proposed method from the aspects of time consumption,storage overhead and *** experimental results show that this method can detect Android system layer attacks such as self-booting of the malicious module and improve the security of data encryption and transmission process *** with the native system,the additional performance overhead is small.
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network *** point clouds,which represent spatial information through a coll...
详细信息
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network *** point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging *** augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization *** of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point ***,there has been a lack of focus on making the most of the numerous existing augmentation *** this deficiency,this research investigates the possibility of combining two fundamental data augmentation *** paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named *** of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or *** innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or *** crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data *** results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation *** is achieved without compromising computational *** examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point *** data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the ro
暂无评论