Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Light...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction and semantic information processing, thereby significantly increasing inference speed. To enhance the detection capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to YOLOv5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable for real-time detection tasks on mobile and embedded devices.
Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past *** of the most tedious tasks is to track a suspect once a crime is *** most ...
详细信息
Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past *** of the most tedious tasks is to track a suspect once a crime is *** most of the crimes are committed by individuals who have a history of felonies,it is essential for a monitoring system that does not just detect the person’s face who has committed the crime,but also their ***,a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network(DNN)model which employs a Single Shot Multibox Detector for detection of face and an auto-encoder model in which the encoder part is used for matching the captured facial images with the criminals has been *** detection and extraction of the face in the image by face cropping,the captured face is then compared with the images in the *** comparison is performed by calculating the similarity value between each pair of images that are obtained by using the Cosine Similarity *** plotting the values in a graph to find the threshold value,we conclude that the confidence rate of the encoder model is 0.75 and above.
Ensemble object detectors have demonstrated remarkable effectiveness in enhancing prediction accuracy and uncertainty quantification. However, their widespread adoption is hindered by significant computational and sto...
详细信息
The Internet has become an important origin of text information, which is then used inside a wide range of research domains. This has been regarded as a necessary foundation for institutions to obtain valuable informa...
详细信息
Herein, we propose high-performance Ti/STO/n+-Si and Ag/STO/n+-Si write-once-read-many-times devices, where the resistance transition mechanisms are controlled by oxygen vacancies in the STO layer and metal atoms from...
详细信息
Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least a...
详细信息
Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least amount of power from a large number of Reed-Muller(RM) logical expressions. The existing approach for optimizing the power of multi-output mixed polarity RM(MPRM) logic circuits suffer from poor optimization results. To solve this problem, a whale optimization algorithm with two-populations strategy and mutation strategy(TMWOA) is proposed in this paper. The two-populations strategy speeds up the convergence of the algorithm by exchanging information about the two-populations. The mutation strategy enhances the ability of the algorithm to jump out of the local optimal solutions by using the information of the current optimal solution. Based on the TMWOA, we propose a multi-output MPRM logic circuits power optimization approach(TMMPOA). Experiments based on the benchmark circuits of the Microelectronics Center of North Carolina(MCNC) validate the effectiveness and superiority of the proposed TMMPOA.
Traffic conflict techniques rely heavily on the proper identification of conflict extremes,which directly affects the prediction performance of extreme value *** sampling techniques,namely,block maxima and peak over t...
详细信息
Traffic conflict techniques rely heavily on the proper identification of conflict extremes,which directly affects the prediction performance of extreme value *** sampling techniques,namely,block maxima and peak over threshold,form the core of these *** studies have demonstrated the inefficacy of extreme value models based on these sampling approaches,as their crash estimates are too imprecise,hindering their widespread practical ***,anomaly detection techniques for sampling conflict extremes have been used,but their application has been limited to estimating crash frequency without considering the crash severity *** address this research gap,this study proposes a hybrid model of machine learning and extreme value theory within a bivariate framework of traffic conflict measures to estimate crash frequency by severity *** particular,modified time-to-collision(MTTC)and expected post-collision change in velocity(Delta-V orΔV)have been proposed in the hybrid modeling framework to estimate rear-end crash frequency by severity ***-end conflicts were identified through artificial intelligence-based video analytics for three four-legged signalized intersections in Brisbane,Australia,using four days of ***-stationary bivariate hybrid generalized extreme value models with different anomaly detection/sampling techniques(isolation forest and minimum covariance determinant)were *** non-stationarity of traffic conflict extremes was handled by parameterizing model parameters,including location,scale,and both location and scale parameters *** results indicate that the bivariate hybrid models can estimate severe and non-severe crashes when compared with historical crash records,thereby demonstrating the viability of the proposed approach.A comparative analysis of two anomaly techniques reveals that the isolation forest model marginally outperforms the minimum covariance determinant ***,the modeling f
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border ***,challenges such as small objects,occlusions,complex backgro...
详细信息
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border ***,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV *** address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object *** leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small *** the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere *** components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference ***,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object *** results on the VisDrone 2019 dataset demonstrate the effectiveness *** to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter *** results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks.
The skin acts as an important barrier between the body and the external environment, playing a vital role as an organ. The application of deep learning in the medical field to solve various health problems has generat...
详细信息
Speech with gender opposition on the internet have been causing antagonism, gamophobia, and pregnancy phobia among young groups. Recognizing gender opposition speech contributes to maintaining a healthy online environ...
详细信息
暂无评论