In this paper, we construct an efficient decoupling-type strategy for solving the Allen-Cahn equation on curved surfaces. It is based on an FEM-EIEQ(Finite Element Method and explicit-Invariant Energy Quadratization) ...
详细信息
In this paper, we construct an efficient decoupling-type strategy for solving the Allen-Cahn equation on curved surfaces. It is based on an FEM-EIEQ(Finite Element Method and explicit-Invariant Energy Quadratization) fully discrete scheme with unconditional energy stability. Spatially the FEM is adopted, using a triangular mesh discretization strategy that can be adapted to complex regions. Temporally, the EIEQ approach is considered, which not only linearizes the nonlinear potential but also gives a new variable that we combine with the nonlocal splitting method to achieve the fully decoupled computation. The strategy can successfully transform the Allen-Cahn system into some completely independent algebraic equations and linear elliptic equations with constant coefficients, we only need to solve these simple equations at each time step. Moreover, we conducted some numerical experiments to demonstrate the effectiveness of the strategy.
Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks *** MANET,the Intrusion Detection System(IDS)is crucial because it aids i...
详细信息
Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks *** MANET,the Intrusion Detection System(IDS)is crucial because it aids in the identification and detection of malicious attacks that impair the network’s regular *** machine learning and deep learning methodologies are used for this purpose in the conventional works to ensure increased security of ***,it still has significant flaws,including increased algorithmic complexity,lower system performance,and a higher rate of ***,the goal of this paper is to create an intelligent IDS framework for significantly enhancing MANET security through the use of deep learning ***,the min-max normalization model is applied to preprocess the given cyber-attack datasets for normalizing the attributes or fields,which increases the overall intrusion detection performance of ***,a novel Adaptive Marine Predator Optimization Algorithm(AOMA)is implemented to choose the optimal features for improving the speed and intrusion detection performance of ***,the Deep Supervise Learning Classification(DSLC)mechanism is utilized to predict and categorize the type of intrusion based on proper learning and training *** evaluation,the performance and results of the proposed AOMA-DSLC based IDS methodology is validated and compared using various performance measures and benchmarking datasets.
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...
详细信息
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first ***,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale *** is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event *** addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable ***,the results are extended to regional consensus of the MASs with the bounded control *** simulations show the effectiveness of the proposed approach.
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more *** has been widely applied in various scenarios,including urban infrastructure,transportation,industry,...
详细信息
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more *** has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic *** introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network *** feature extraction leads to less accurate classification *** abnormal traffic detection,the data of network traffic is high-dimensional and *** data not only increases the computational burden of model training but also makes information extraction more *** address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic *** fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is *** module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive *** proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual *** module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information *** results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%.
Crop weed segmentation is one of the most challenging tasks in the field of computer vision. This is because, unlike other object detection or segmentation tasks, crop and weed are similar in terms of spectral feature...
详细信息
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...
详细信息
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
As a promising edge computing paradigm, task offloading involves transferring data from resource-limited devices to high-performance servers to expedite processing. However, devices in isolated networks without direct...
详细信息
As a promising edge computing paradigm, task offloading involves transferring data from resource-limited devices to high-performance servers to expedite processing. However, devices in isolated networks without direct Internet connections face challenges in task offloading. To address this issue, we propose a novel Low-cost Unmanned Aerial Vehicle (UAV) Task Offloading Scheme based on Trustable and Trackable Data Routing (LTOTT) for deadline-aware tasks in non-connected networks. The main contributions of LTOTT are as follows: (1) A novel dissemination method that devices route different numbers of Copied Tasks (CTs) and Task Computing Notices (TCNs) in different directions based on task deadlines is proposed to enable the UAV to get tasks earlier and complete them in time. (2) In order to reduce the risk of malicious attacks during the spreading of CTs and TCNs, a trust evaluation based on a trackable data routing method is proposed to ensure secure transmission. (3) In addition, based on the evaluated trust and the received information, a dynamic UAV flight trajectory optimization is proposed to enable tasks completed before their deadlines. A large number of experimental results show that LTOTT increases the task completion rate by 41.41% - 134.15%;reduces average delay and UAV's flight distance respectively by 26.88% - 51.52%, 16.37% -73.40% compared with the existing schemes. IEEE
Large Language Models (LLMs) have evolved into Multimodal Large Language Models (MLLMs), significantly enhancing their capabilities by integrating visual information and other types, thus aligning more closely with th...
详细信息
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste...
详细信息
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)***,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism *** mitigate this issue,we propose a padding method that inserts several bits before the information frame *** obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are *** presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small *** proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security...
详细信息
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security of the *** intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system *** this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot *** this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant *** proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO *** results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness *** a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
暂无评论