Federated learning (FL) is a promising artificial intelligence framework that enables clients to collectively train models with data privacy. However, in real-world scenarios, to construct practical FL frameworks, sev...
详细信息
Satellite image classification and prediction are crucial, with applications in domains ranging from environmental monitoring to urban planning, geological exploration, mapping, disaster response management, and agric...
详细信息
Yoga is a centuries-old style of exercise followed by sports personnel, patients, and physiotherapist as their regime. A correct posture and technique are the key points in yoga to reap the maximum benefits. Hence, de...
详细信息
Circular RNAs(circRNAs)are RNAs with closed circular structure involved in many biological processes by key interactions with RNA binding proteins(RBPs).Existing methods for predicting these interactions have limitati...
详细信息
Circular RNAs(circRNAs)are RNAs with closed circular structure involved in many biological processes by key interactions with RNA binding proteins(RBPs).Existing methods for predicting these interactions have limitations in feature *** view of this,we propose a method named circ2CBA,which uses only sequence information of circRNAs to predict circRNA-RBP binding *** have constructed a data set which includes eight ***,circ2CBA encodes circRNA sequences using the one-hot ***,a two-layer convolutional neural network(CNN)is used to initially extract the *** CNN,circ2CBA uses a layer of bidirectional long and short-term memory network(BiLSTM)and the self-attention mechanism to learn the *** AUC value of circ2CBA reaches *** of circ2CBA with other three methods on our data set and an ablation experiment confirm that circ2CBA is an effective method to predict the binding sites between circRNAs and RBPs.
Real-time 3-D view reconstruction in an unfamiliar environment poses complexity for various applications due to varying conditions such as occlusion, latency, precision, etc. This article thoroughly examines and tests...
详细信息
Pixel-level structure segmentations have attracted considerable attention,playing a crucial role in autonomous driving within the metaverse and enhancing comprehension in light field-based machine ***,current light fi...
详细信息
Pixel-level structure segmentations have attracted considerable attention,playing a crucial role in autonomous driving within the metaverse and enhancing comprehension in light field-based machine ***,current light field modeling methods fail to integrate appearance and geometric structural information into a coherent semantic space,thereby limiting the capability of light field transmission for visual *** this paper,we propose a general light field modeling method for pixel-level structure segmentation,comprising a generative light field prompting encoder(LF-GPE)and a prompt-based masked light field pretraining(LF-PMP)*** LF-GPE,serving as a light field backbone,can extract both appearance and geometric structural cues *** aligns these features into a unified visual space,facilitating semantic ***,our LF-PMP,during the pretraining phase,integrates a mixed light field and a multi-view light field *** prioritizes considering the geometric structural properties of the light field,enabling the light field backbone to accumulate a wealth of prior *** evaluate our pretrained LF-GPE on two downstream tasks:light field salient object detection and semantic *** results demonstrate that LF-GPE can effectively learn high-quality light field features and achieve highly competitive performance in pixel-level segmentation tasks.
In solving multi-objective vehicle routing problems with time windows (MOVRPTW),most existing algorithms focus on the optimization of a single problem formulation. However,little effort has been devoted to exploiting ...
详细信息
In solving multi-objective vehicle routing problems with time windows (MOVRPTW),most existing algorithms focus on the optimization of a single problem formulation. However,little effort has been devoted to exploiting valuable knowledge from the alternate formulations of MOVRPTW for better optimization performance. Aiming at this insufficiency,this study proposes a decomposition-based multi-objective multiform evolutionary algorithm (MMFEA/D),which performs the evolutionary search on multiple alternate formulations of MOVRPTW simultaneously to complement each other. In particular,the main characteristics of MMFEA/D are three folds. First,a multiform construction (MFC) strategy is adopted to construct multiple alternate formulations,each of which is formulated by grouping several adjacent subproblems based on the decomposition of MOVRPTW. Second,a transfer reproduction (TFR) mechanism is designed to generate offspring for each formulation via transferring promising solutions from other formulations,making that the useful traits captured from different formulations can be shared and leveraged to guide the evolutionary search. Third,an adaptive local search (ALS) strategy is developed to invest search effort on different alternate formulations as per their usefulness for MOVRPTW,thus facilitating the efficient allocation of computational resources. Experimental studies have demonstrated the superior performance of MMFEA/D on the classical Solomon instances and the real-world instances.
Accurate and reliable wind power forecasting is of great importance for stable grid operation and advanced dispatch planning. Due to the complex, non-stationary, and highly volatile nature of wind power data, Transfor...
详细信息
A common strategy for Parameter-Efficient Fine-Tuning (PEFT) of pre-trained Vision Transformers (ViTs) involves adapting the model to downstream tasks by learning a low-rank adaptation matrix. This matrix is decompose...
With the increasing integration of power plants into the frequency-regulation markets, the importance of optimal trading has grown substantially. This paper conducts an in-depth analysis of their optimal trading behav...
详细信息
暂无评论