Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil...
详细信息
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential ***, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error *** extensive experimental analysis was performed on the benchmark *** evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.
Billions of people worldwide are affected by vision impairment majorly caused due to age-related degradation and refractive errors. Diabetic Retinopathy(DR) and Macular Hole(MH) are among the most prevalent senescent ...
详细信息
Every day,more and more data is being produced by the Internet of Things(IoT)*** data differ in amount,diversity,veracity,and *** of latency,various types of data handling in cloud computing are not suitable for many ...
详细信息
Every day,more and more data is being produced by the Internet of Things(IoT)*** data differ in amount,diversity,veracity,and *** of latency,various types of data handling in cloud computing are not suitable for many time-sensitive *** users move from one site to another,mobility also adds to the *** placing computing close to IoT devices with mobility support,fog computing addresses these *** efficient Load Balancing Algorithm(LBA)improves user experience and Quality of Service(QoS).Classification of Request(CoR)based Resource Adaptive LBA is suggested in this *** technique clusters fog nodes using an efficient K-means clustering algorithm and then uses a Decision Tree approach to categorize the *** decision-making process for time-sensitive and delay-tolerable requests is facilitated by the classification of *** does the operation based on these *** MobFogSim simulation program is utilized to assess how well the algorithm with mobility features *** outcome demonstrates that the LBA algorithm’s performance enhances the total system performance,which was attained by(90.8%).Using LBA,several metrics may be examined,including Response Time(RT),delay(d),Energy Consumption(EC),and *** the on-demand provisioning of necessary resources to IoT users,our suggested LBA assures effective resource usage.
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classific...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classification (BTSC) has gained more attention among researcher communities. BTSC is the process of finding brain tumor tissues and classifying the tissues based on the tumor types. Manual tumor segmentation from is prone to error and a time-consuming task. A precise and fast BTSC model is developed in this manuscript based on a transfer learning-based Convolutional Neural Networks (CNN) model. The utilization of a variant of CNN is because of its superiority in distinct tasks. In the initial phase, the Magnetic Resonance Imaging (MRI) brain images are acquired from the Brain Tumor Image Segmentation Challenge (BRATS) 2019, 2020 and 2021 databases. Then the image augmentation is performed on the gathered images by using zoom-in, rotation, zoom-out, flipping, scaling, and shifting methods that effectively reduce overfitting issues in the classification model. The augmented images are segmented using the layers of the Visual-Geometry-Group (VGG-19) model. Then feature extraction using An Attribute Aware Attention (AWA) methodology is carried out on the segmented images following the segmentation block in the VGG-19 model. The crucial features are then selected using the attribute category reciprocal attention phase. These features are inputted to the Model Agnostic Concept Extractor (MACE) to generate the relevance score between the features for assisting in the final classification process. The obtained relevance scores from the MACE are provided to the max-pooling layer of the VGG-19 model. Then, the final classified output is obtained from the modified VGG-19 architecture. The implemented Relevance score with the AWA-based VGG-19 model is used to classify the tumor as the whole tumor, enhanced tumor, and tumor core. In the classification section, the proposed
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in...
详细信息
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in which, there is a challenge for viewers to extract comprehensive recipes from lengthy visual content. Effective summary is necessary in order to translate the abundance of culinary knowledge found in videos into text recipes that are easy to read and follow. This will make the cooking process easier for individuals who are searching for precise step by step cooking instructions. Such a system satisfies the needs of a broad spectrum of learners while also improving accessibility and user simplicity. As there is a growing need for easy-to-follow recipes made from cooking videos, researchers are looking on the process of automated summarization using advanced techniques. One such approach is presented in our work, which combines simple image-based models, audio processing, and GPT-based models to create a system that makes it easier to turn long culinary videos into in-depth recipe texts. A systematic workflow is adopted in order to achieve the objective. Initially, Focus is given for frame summary generation which employs a combination of two convolutional neural networks and a GPT-based model. A pre-trained CNN model called Inception-V3 is fine-tuned with food image dataset for dish recognition and another custom-made CNN is built with ingredient images for ingredient recognition. Then a GPT based model is used to combine the results produced by the two CNN models which will give us the frame summary in the desired format. Subsequently, Audio summary generation is tackled by performing Speech-to-text functionality in python. A GPT-based model is then used to generate a summary of the resulting textual representation of audio in our desired format. Finally, to refine the summaries obtained from visual and auditory content, Another GPT-based model is used
Diabetes is a long-term illness that results in a variety of chronic body damage, such as kidney failure, heart problems, eye damage, depression, and nerve damage. This disease is caused by several risk factors, ...
详细信息
Internet of Medical Things (IoMT) is a technology that encompasses medical devices, wearable sensors, and applications connected to the Internet. In road accidents, it plays a crucial role in enhancing emergency respo...
详细信息
Background:The global impact of the highly contagious COVID-19 virus has created unprecedented challenges,significantly impacting public health and economies *** research article conducts a time series analysis of COV...
详细信息
Background:The global impact of the highly contagious COVID-19 virus has created unprecedented challenges,significantly impacting public health and economies *** research article conducts a time series analysis of COVID-19 data across various countries,including India,Brazil,Russia,and the United States,with a particular emphasis on total confirmed ***:The proposed approach combines auto-regressive integrated moving average(ARIMA)'s ability to capture linear trends and seasonality with long short-term memory(LSTM)networks,which are designed to learn complex nonlinear dependencies in the *** hybrid approach surpasses both individual models and existing ARIMA-artificial neural network(ANN)hybrids,which often struggle with highly nonlinear time series like COVID-19 *** integrating ARIMA and LSTM,the model aims to achieve superior forecasting accuracy compared to baseline models,including ARIMA,Gated Recurrent Unit(GRU),LSTM,and ***:The hybrid ARIMA-LSTM model outperformed the benchmark models,achieving a mean absolute percentage error(MAPE)score of 2.4%.Among the benchmark models,GRU performed the best with a MAPE score of 2.9%,followed by LSTM with a score of 3.6%.Conclusions:The proposed ARIMA-LSTM hybrid model outperforms ARIMA,GRU,LSTM,Prophet,and the ARIMA-ANN hybrid model when evaluating using metrics like MAPE,symmetric mean absolute percentage error,and median absolute percentage error across all countries *** findings have the potential to significantly improve preparedness and response efforts by public health authorities,allowing for more efficient resource allocation and targeted interventions.
Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this ***-aided d...
详细信息
Pneumonia is an acute lung infection that has caused many fatalitiesglobally. Radiologists often employ chest X-rays to identify pneumoniasince they are presently the most effective imaging method for this ***-aided diagnosis of pneumonia using deep learning techniques iswidely used due to its effectiveness and performance. In the proposed method,the Synthetic Minority Oversampling Technique (SMOTE) approach is usedto eliminate the class imbalance in the X-ray dataset. To compensate forthe paucity of accessible data, pre-trained transfer learning is used, and anensemble Convolutional Neural Network (CNN) model is developed. Theensemble model consists of all possible combinations of the MobileNetv2,Visual Geometry Group (VGG16), and DenseNet169 models. MobileNetV2and DenseNet169 performed well in the Single classifier model, with anaccuracy of 94%, while the ensemble model (MobileNetV2+DenseNet169)achieved an accuracy of 96.9%. Using the data synchronous parallel modelin Distributed Tensorflow, the training process accelerated performance by98.6% and outperformed other conventional approaches.
Automated blood cell classification is crucial for hematological analysis, yet the scarcity of annotated medical datasets challenges deep learning models. This study presents a novel semi-supervised Elastic Generative...
详细信息
暂无评论