Pedestrian re-identification technology enables accurate identification of individuals and is widely used in modern intelligent video surveillance systems to aid law enforcement, including criminal apprehension and lo...
详细信息
Person Re-Identification falls within the scope of computer vision, acting a technique to ascertain the presence of a specified pedestrian within a video or image library. The related research is of great significance...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
In Currently, research in the field of infrared road object detection is primarily focused on enhancing model performance and robustness to address the challenges posed by complex real-world driving scenarios. In resp...
详细信息
In recent years, the utilization of unmanned aerial vehicles (UAVs) for aerial target detection has gained significant attention due to their high-altitude perspective and maneuverability, which offer novel opportunit...
详细信息
Steel, being a widely utilized material in industrial production, holds a pivotal role in ensuring product safety and longevity. Hence, the exploration and implementation of steel surface defect detection technology c...
详细信息
Underwater target detection is an important part of marine exploration. However, in complex underwater environments due to factors like light absorption and scattering, as well as variations in water quality and clari...
详细信息
It is a significant and challenging task to detect the informative features to carry out explainable analysis for high dimensional data,especially for those with very small number of *** selection especially the unsup...
详细信息
It is a significant and challenging task to detect the informative features to carry out explainable analysis for high dimensional data,especially for those with very small number of *** selection especially the unsupervised ones are the right way to deal with this challenge and realize the ***,two unsupervised spectral feature selection algorithms are proposed in this *** group features using advanced Self-Tuning spectral clustering algorithm based on local standard deviation,so as to detect the global optimal feature clusters as far as *** two feature ranking techniques,including cosine-similarity-based feature ranking and entropy-based feature ranking,are proposed,so that the representative feature of each cluster can be detected to comprise the feature subset on which the explainable classification system will be *** effectiveness of the proposed algorithms is tested on high dimensional benchmark omics datasets and compared to peer methods,and the statistical test are conducted to determine whether or not the proposed spectral feature selection algorithms are significantly different from those of the peer *** extensive experiments demonstrate the proposed unsupervised spectral feature selection algorithms outperform the peer ones in comparison,especially the one based on cosine similarity feature ranking *** statistical test results show that the entropy feature ranking based spectral feature selection algorithm performs *** detected features demonstrate strong discriminative capabilities in downstream classifiers for omics data,such that the AI system built on them would be reliable and *** is especially significant in building transparent and trustworthy medical diagnostic systems from an interpretable AI perspective.
Federated Class-Incremental Learning (FCIL) aims to design privacy-preserving collaborative training methods to continuously learn new classes from distributed datasets. In these scenarios, federated clients face the ...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
暂无评论