Artificial intelligence (AI) empowered edge computing has given rise to a new paradigm and effectively facilitated the promotion and development of multimedia applications. The speech assistant is one of the significa...
详细信息
Artificial intelligence (AI) empowered edge computing has given rise to a new paradigm and effectively facilitated the promotion and development of multimedia applications. The speech assistant is one of the significant services provided by multimedia applications, which aims to offer intelligent interactive experiences between humans and machines. However, malicious attackers may exploit spoofed speeches to deceive speech assistants, posing great challenges to the security of multimedia applications. The limited resources of multimedia terminal devices hinder their ability to effectively load speech spoofing detection models. Furthermore, processing and analyzing speech in the cloud can result in poor real-time performance and potential privacy risks. Existing speech spoofing detection methods rely heavily on annotated data and exhibit poor generalization capabilities for unseen spoofed speeches. To address these challenges, this paper first proposes the Coordinate Attention Network (CA2Net) that consists of coordinate attention blocks and Res2Net blocks. CA2Net can simultaneously extract temporal and spectral speech feature information and represent multi-scale speech features at a granularity level. Besides, a contrastive learning-based speech spoofing detection framework named GEMINI is proposed. GEMINI can be effectively deployed on edge nodes and autonomously learn speech features with strong generalization capabilities. GEMINI first performs data augmentation on speech signals and extracts conventional acoustic features to enhance the feature robustness. Subsequently, GEMINI utilizes the proposed CA2Net to further explore the discriminative speech features. Then, a tensor-based multi-attention comparison model is employed to maximize the consistency between speech contexts. GEMINI continuously updates CA2Net with contrastive learning, which enables CA2Net to effectively represent speech signals and accurately detect spoofed speeches. Extensive experiments on
The rapid increase in volume and complexity of biomedical data requires changes in research, communication, and clinical practices. This includes learning how to effectively integrate automated analysis with high–dat...
The rapid increase in volume and complexity of biomedical data requires changes in research, communication, and clinical practices. This includes learning how to effectively integrate automated analysis with high–data density visualizations that clearly express complex phenomena. In this review, we summarize key principles and resources from data visualization research that help address this difficult challenge. We then survey how visualization is being used in a selection of emerging biomedical research areas, including three-dimensional genomics, single-cell RNA sequencing (RNA-seq), the protein structure universe, phosphoproteomics, augmented reality–assisted surgery, and metagenomics. While specific research areas need highly tailored visualizations, there are common challenges that can be addressed with general methods and strategies. Also common, however, are poor visualization practices. We outline ongoing initiatives aimed at improving visualization practices in biomedical research via better tools, peer-to-peer learning, and interdisciplinary collaboration with computer scientists, science communicators, and graphic designers. These changes are revolutionizing how we see and think about our data.
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT service...
详细信息
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT services, Mobile Edge Computing (MEC) has emerged as an indispensable technology in smart health. Benefiting from the cost-effectiveness of deployment, unmanned aerial vehicles (UAVs) equipped with MEC servers in Non-Orthogonal Multiple Access (NOMA) have emerged as a promising solution for providing smart health services in proximity to medical devices (MDs). However, the escalating number of MDs and the limited availability of communication resources of UAVs give rise to a significant increase in transmission latency. Moreover, due to the limited communication range of UAVs, the geographically-distributed MDs lead to workload imbalance of UAVs, which deteriorates the service response delay. To this end, this paper proposes a UAV-enabled Distributed computation Offloading and Power control method with Multi-Agent, named DOPMA, for NOMA-based IoMT environment. Specifically, this paper introduces computation and transmission queue models to analyze the dynamic characteristics of task execution latency and energy consumption. Moreover, a credit assignment scheme-based reward function is designed considering both system-level rewards and rewards tailored to each MD, and an improved multi-agent deep deterministic policy gradient algorithm is developed to derive offloading and power control decisions independently. Extensive simulations demonstrate that the proposed method outperforms existing schemes, achieving \(7.1\%\) reduction in energy consumption and \(16\%\) decrease in average delay.
The Anchor-based Multi-view Subspace Clustering (AMSC) has turned into a favourable tool for large-scale multi-view clustering. However, there still exist some limitations to the current AMSC approaches. First, they t...
详细信息
The Anchor-based Multi-view Subspace Clustering (AMSC) has turned into a favourable tool for large-scale multi-view clustering. However, there still exist some limitations to the current AMSC approaches. First, they typically recover anchor graph structure in the original linear space, restricting their feasibility for nonlinear scenarios. Second, they usually overlook the potential benefits of jointly capturing the inter-view and intra-view information for enhancing the anchor representation learning. Third, these approaches mostly perform anchor-based subspace learning by a specific matrix norm, neglecting the latent high-order correlation across different views. To overcome these limitations, this paper presents an efficient and effective approach termed Large-scale Tensorized Multi-view Kernel Subspace Clustering (LTKMSC). Different from the existing AMSC approaches, our LTKMSC approach exploits both inter-view and intra-view awareness for anchor-based representation building. Concretely, the low-rank tensor learning is leveraged to capture the high-order correlation (i.e., the inter-view complementary information) among distinct views, upon which the \(l_{1,2}\) norm is imposed to explore the intra-view anchor graph structure in each view. Moreover, the kernel learning technique is leveraged to explore the nonlinear anchor-sample relationships embedded in multiple views. With the unified objective function formulated, an efficient optimization algorithm that enjoys low computational complexity is further designed. Extensive experiments on a variety of multi-view datasets have confirmed the efficiency and effectiveness of our approach when compared with the other competitive approaches.
Graph pattern mining is essential for deciphering complex networks. In the real world, graphs are dynamic and evolve over time, necessitating updates in mining patterns to reflect these changes. Traditional methods us...
详细信息
Graph pattern mining is essential for deciphering complex networks. In the real world, graphs are dynamic and evolve over time, necessitating updates in mining patterns to reflect these changes. Traditional methods use fine-grained incremental computation to avoid full re-mining after each update, which improves speed but often overlooks potential gains from examining inter-update interactions holistically, thus missing out on overall efficiency *** this paper, we introduce Cheetah, a dynamic graph mining system that processes updates in a coarse-grained manner by leveraging exploration domains. These domains exploit the community structure of real-world graphs to uncover data reuse opportunities typically missed by existing approaches. Exploration domains, which encapsulate extensive portions of the graph relevant to updates, allow multiple updates to explore the same regions efficiently. Cheetah dynamically constructs these domains using a management module that identifies and maintains areas of redundancy as the graph changes. By grouping updates within these domains and employing a neighbor-centric expansion strategy, Cheetah minimizes redundant data accesses. Our evaluation of Cheetah across five real-world datasets shows it outperforms current leading systems by an average factor of 2.63 ×.
暂无评论