Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource *** traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenge...
详细信息
Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource *** traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and *** address these issues,this study proposes a novel two-part invalid detection task allocation *** the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous *** to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public *** the second step of the framework,task allocation modeling is performed using a twopart graph matching *** phase introduces a P-queue KM algorithm that implements a more efficient optimization *** allocation efficiency is improved by approximately 23.83%compared to the baseline *** results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation.
Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research *** paper proposes a data forwarding algorithm based on Multidimensional Social Relatio...
详细信息
Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research *** paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this *** proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among *** new metrics are defined:the intensity of node social relationships,node activity,and community *** the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node *** a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between *** proposed algorithm was compared to three existing routing algorithms in simulation *** indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
Aiming at the low accuracy of existing binocular stereo matching and depth estimation methods, this paper proposes a multi-scale binocular stereo matching network based on semantic association. A semantic association ...
详细信息
Aiming at the low accuracy of existing binocular stereo matching and depth estimation methods, this paper proposes a multi-scale binocular stereo matching network based on semantic association. A semantic association module is designed to construct the contextual semantic association relationship among the pixels through semantic category and attention mechanism. The disparity of those regions where the disparity is easily estimated can be used to assist the disparity estimation of relatively difficult regions, so as to improve the accuracy of disparity estimation of the whole image. Simultaneously, a multi-scale cost volume computation module is proposed. Unlike the existing methods, which use a single cost volume, the proposed multi-scale cost volume computation module designs multiple cost volumes for features of different scales. The semantic association feature and multi-scale cost volume are aggregated, which fuses the high-level semantic information and the low-level local detailed information to enhance the feature representation for accurate stereo matching. We demonstrate the effectiveness of the proposed solutions on the KITTI2015 binocular stereo matching dataset, and our model achieves comparable or higher matching performance, compared to other seven classic binocular stereo matching algorithms.
This study examines how Chinese older adults leverage Douyin, a short video platform, for informal learning purposes, analyzing their usage patterns, motivations, and encountered challenges. Although Douyin was not ex...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future *** this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving ...
详细信息
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving sophistication of cyber *** paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression(LR),Support Vector Machines(SVM),eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),and Deep Neural Networks(DNN).Utilizing the XSS-Attacks-2021 dataset,which comprises 460 instances across various real-world trafficrelated scenarios,this framework significantly enhances XSS attack *** approach,which includes rigorous feature engineering and model tuning,not only optimizes accuracy but also effectively minimizes false positives(FP)(0.13%)and false negatives(FN)(0.19%).This comprehensive methodology has been rigorously validated,achieving an unprecedented accuracy of 99.87%.The proposed system is scalable and efficient,capable of adapting to the increasing number of web applications and user demands without a decline in *** demonstrates exceptional real-time capabilities,with the ability to detect XSS attacks dynamically,maintaining high accuracy and low latency even under significant ***,despite the computational complexity introduced by the hybrid ensemble approach,strategic use of parallel processing and algorithm tuning ensures that the system remains scalable and performs robustly in real-time *** for easy integration with existing web security systems,our framework supports adaptable Application Programming Interfaces(APIs)and a modular design,facilitating seamless augmentation of current *** innovation represents a significant advancement in cybersecurity,offering a scalable and effective solution for securing modern web applications against evolving threats.
Dear Editor,This letter presents a latent-factorization-of-tensors (LFT)-incorporated battery cycle life prediction framework. Data-driven prognosis and health management (PHM) for battery pack (BP) can boost the safe...
详细信息
Dear Editor,This letter presents a latent-factorization-of-tensors (LFT)-incorporated battery cycle life prediction framework. Data-driven prognosis and health management (PHM) for battery pack (BP) can boost the safety and sustainability of a battery management system (BMS),which relies heavily on the quality of the measured BP data like the voltage (V), current (I), and temperature (T).
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se...
详细信息
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency ***,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this ***,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.
暂无评论