In practical abnormal traffic detection scenarios,traffic often appears as drift,imbalanced and rare labeled streams,and how to effectively identify malicious traffic in such complex situations has become a challenge ...
详细信息
In practical abnormal traffic detection scenarios,traffic often appears as drift,imbalanced and rare labeled streams,and how to effectively identify malicious traffic in such complex situations has become a challenge for malicious traffic *** have extensive studies on malicious traffic detection with single challenge,but the detection of complex traffic has not been widely *** adaptive random forests(QARF) is proposed to detect traffic streams with concept drift,imbalance and lack of labeled *** is an online active learning based approach which combines adaptive random forests method and adaptive margin sampling *** achieves querying a small number of instances from unlabeled traffic streams to obtain effective *** conduct experiments using the NSL-KDD dataset to evaluate the performance of *** is compared with other state-of-the-art *** experimental results show that QARF obtains 98.20% accuracy on the NSL-KDD *** performs better than other state-of-the-art methods in comparisons.
Hidden capacity,concealment,security,and robustness are essential indicators of hiding ***,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the *** ...
详细信息
Hidden capacity,concealment,security,and robustness are essential indicators of hiding ***,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the *** practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret *** image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding *** this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet *** wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding *** the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret *** lowresolution secret images are combined using densemodules to obtain a high-quality secret *** experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various *** proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical *** conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing *** ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various *** research and experimentation can explore the algorith
With the ever-rising risk of phishing attacks, which capitalize on vulnerable human behavior in the contemporary digital space, requires new cybersecurity methods. This literary work contributes to the solution by nov...
详细信息
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,***,the existing research on sentiment analysis is relatively *** does not eff...
详细信息
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,***,the existing research on sentiment analysis is relatively *** does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical *** this research,we offer the SA-Model,a poetic sentiment analysis ***-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is *** feasibility and accuracy of the model are validated through the ancient poetry sentiment *** with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE service...
详细信息
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the *** IoE-based cloud computing services are located at remote locations without the control of the data *** data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security *** lack of knowledge about security capabilities and control over data raises several security *** Acid(DNA)computing is a biological concept that can improve the security of IoE big *** IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher *** paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access *** experimental results illustrated that DNACDS performs better than other DNA-based security *** theoretical security analysis of the DNACDS shows better resistance capabilities.
Phishing attacks are always surfacing as key threats against internet users, necessitating advanced detection methods. Blacklist-based systems and rule-based models of phishing detection generally have had critical li...
详细信息
ISBN:
(纸本)9798350367904
Phishing attacks are always surfacing as key threats against internet users, necessitating advanced detection methods. Blacklist-based systems and rule-based models of phishing detection generally have had critical limitations in dealing with evolving tactics and new phishing schemes. Some of these approaches fail to cope with the temporal and visual patterns of phishing sites, which are crucial for timely and accurate detection. To overcome these difficulties, this work introduces a hybrid AI-based phishing website detection model that utilizes several machine learning and deep learning techniques to improve the accuracy of the detection and remove false positives. The proposed model uses LSTM networks, Genetic Algorithms, Random Forest, and CNN through the stacking ensemble framework. Since LSTM is adopted to capture the temporal dependencies in the website traffic and user interaction patterns, this model can effectively model their phishing behavior over time. GA is used for bioinspired feature selection to reduce the dimensionality of features while optimizing model performance. Random Forest is used as a base layer addressing structured features like URL characteristics and WHOIS information. CNNs are incorporated to extract feature content from a webpage and images that carry various visual indicators often used in phishing attacks including counterfeit logos or banners. A meta-classifier is then used to combine the outputs of LSTMs, CNN, and RF and generate the final classification to boost the detection rate. The proposed hybrid model surpasses the existing techniques and facilitates the analysis of temporal, visual, and structured data, making the detection considerably more accurate. Achieving accuracy of as much as 96-97% and having an AUC of 0.97 with a false positive rate below 3%, the model then impacts the more powerful and more flexible phishing detection system, which is then capable of being more protective against higher sophisticated phishing te
The self-cascade(SC) method is an effective technique for chaos enhancement and complexity increasing in chaos ***, the controllable self-cascade(CSC) method allows for more accurate control of Lyapunov exponents of t...
详细信息
The self-cascade(SC) method is an effective technique for chaos enhancement and complexity increasing in chaos ***, the controllable self-cascade(CSC) method allows for more accurate control of Lyapunov exponents of the discrete map. In this work, the SC and CSC systems of the original map are derived, which enhance the chaotic performance while preserving the fundamental dynamical characteristics of the original map. Higher Lyapunov exponent of chaotic sequences corresponding to higher frequency are obtained in SC and CSC systems. Meanwhile, the Lyapunov exponent could be linearly controlled with greater flexibility in the CSC system. The verification of the numerical simulation and theoretical analysis is carried out based on the platform of CH32.
The innovative system outlined in the provided research demonstrates a significant stride towards addressing the growing concern of road safety. Lane departure and driver drowsiness are two major causes of road accide...
详细信息
Agricultural industry has grown significantly bring sustainable farming practices in improving the food quality, enhancing agricultural productivity and global food security. However, the crop yield and its quality ar...
详细信息
暂无评论