Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplor...
详细信息
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplored. The recent work Unified GNN Sparsification (UGS) studies lottery ticket learning for GNNs, aiming to find a subset of model parameters and graph structures that can best maintain the GNN performance. However, it is tailed for the transductive setting, failing to generalize to unseen graphs, which are common in inductive tasks like graph classification. In this work, we propose a simple and effective learning paradigm, Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets with inductive pruning capacity. To prune the input graphs, we design a predictive model to generate importance scores for each edge based on the input. To prune the model parameters, it views the weight’s magnitude as their importance scores. Then we design an iterative co-pruning strategy to trim the graph edges and GNN weights based on their importance scores. Although it might be strikingly simple, ICPG surpasses the existing pruning method and can be universally applicable in both inductive and transductive learning settings. On 10 graph-classification and two node-classification benchmarks, ICPG achieves the same performance level with 14.26%–43.12% sparsity for graphs and 48.80%–91.41% sparsity for the GNN model.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Underwater images often exhibit severe color deviations and degraded visibility,which limits many practical applications in ocean *** extensive research has been conducted into underwater image enhancement,little of w...
详细信息
Underwater images often exhibit severe color deviations and degraded visibility,which limits many practical applications in ocean *** extensive research has been conducted into underwater image enhancement,little of which demonstrates the significant robustness and generalization for diverse real-world underwater *** this paper,we propose an adaptive color correction algorithm based on the maximum likelihood estimation of Gaussian parameters,which effectively removes color casts of a variety of underwater images.A novel algorithm using weighted combination of gradient maps in HSV color space and absolute difference of intensity for accurate background light estimation is proposed,which circumvents the influence of white or bright regions that challenges existing physical model-based *** enhance contrast of resultant images,a piece-wise affine transform is applied to the transmission map estimated via background light ***,with the estimated background light and transmission map,the scene radiance is recovered by addressing an inverse problem of image formation *** experiments reveal that our results are characterized by natural appearance and genuine color,and our method achieves competitive performance with the state-of-the-art methods in terms of objective evaluation metrics,which further validates the better robustness and higher generalization ability of our enhancement model.
The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with *** and ES are usually invested by users o...
详细信息
The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with *** and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate *** centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is ***,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning *** steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion ***,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating *** the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange ***,an SDN with four MGs is conducted considering multiple flexible *** shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch ***,the annual DG electricity oversteps the maximum active power demand value.
This paper presents a novel two-stage progressive search approach with unsupervised feature learning and Q-learning (TSLL) to enhance surrogate-assisted evolutionary optimization for medium-scale expensive problems. T...
详细信息
Resonant operation, exploiting high quality-factor planar inductors, has recently enabled gigahertz (GHz) applications for large-area electronics (LAE), providing a new technology platform for large-scale and flexible...
详细信息
This paper presents a method for the optimized reconfiguration of radial distribution systems that explicitly considers the protection systems constraints. A fully automated method based on graph analysis is proposed ...
详细信息
With the increasing number of edited videos, many robust video fingerprinting schemes have been proposed to solve the problem of video content authentication. However, most of them either deal with the temporal and sp...
详细信息
暂无评论