The goal of generalized zero-shot learning (GZSL) is to transfer knowledge from seen classes to unseen classes. However, a significant challenge is the single-category attributes are often inadequate to capture the in...
详细信息
Potato crops are vital to global food security, but they are susceptible to several diseases that hinder growth and yield. Traditional methods of detecting these diseases rely on labor-intensive lab tests and human ob...
详细信息
With the emergence of the artificial intelligence era,all kinds of robots are traditionally used in agricultural ***,studies concerning the robot task assignment problem in the agriculture field,which is closely relat...
详细信息
With the emergence of the artificial intelligence era,all kinds of robots are traditionally used in agricultural ***,studies concerning the robot task assignment problem in the agriculture field,which is closely related to the cost and efficiency of a smart farm,are ***,a Multi-Weeding Robot Task Assignment(MWRTA)problem is addressed in this paper to minimize the maximum completion time and residual herbicide.A mathematical model is set up,and a Multi-Objective Teaching-Learning-Based Optimization(MOTLBO)algorithm is presented to solve the *** the MOTLBO algorithm,a heuristicbased initialization comprising an improved Nawaz Enscore,and Ham(NEH)heuristic and maximum loadbased heuristic is used to generate an initial population with a high level of quality and *** effective teaching-learning-based optimization process is designed with a dynamic grouping mechanism and a redefined individual updating rule.A multi-neighborhood-based local search strategy is provided to balance the exploitation and exploration of the ***,a comprehensive experiment is conducted to compare the proposed algorithm with several state-of-the-art algorithms in the *** results demonstrate the significant superiority of the proposed algorithm for solving the problem under consideration.
Over the years, Machine Translation in English to Punjabi has seen significant advancements. The study emphasizes Punjabi's unique linguistic complexities, which pose challenges for accurate and contextually relev...
详细信息
Providing accurate and timely traffic information such as arriving time of train plays a significant part in intelligent train status prediction. Maximum-speed train status forecast is a significant topic as far as ra...
详细信息
Graph convolutional networks (GCNs) have emerged as a powerful tool for action recognition, leveraging skeletal graphs to encapsulate human motion. Despite their efficacy, a significant challenge remains the dependenc...
详细信息
The event management mechanism matches messages that have been subscribed to and events that have been published. To identify the subscriptions that correspond to the occurrence inside the category, it must first run ...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
The pandemic creates a more complicated providence of medical assistance and diagnosis procedures. In the world, Covid-19, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS Cov-2), and plague are widely known...
详细信息
The pandemic creates a more complicated providence of medical assistance and diagnosis procedures. In the world, Covid-19, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS Cov-2), and plague are widely known pandemic disease desperations. Due to the recent COVID-19 pandemic tragedies, various medical diagnosis models and intelligent computing solutions are proposed for medical applications. In this era of computer-based medical environment, conventional clinical solutions are surpassed by many Machine Learning and Deep Learning-based COVID-19 diagnosis models. Anyhow, many existing models are developing lab-based diagnosis environments. Notably, the Gated Recurrent Unit-based Respiratory Data Analysis (GRU-RE), Intelligent Unmanned Aerial Vehicle-based Covid Data Analysis (Thermal Images) (I-UVAC), and Convolutional Neural Network-based computer Tomography Image Analysis (CNN-CT) are enriched with lightweight image data analysis techniques for obtaining mass pandemic data at real-time conditions. However, the existing models directly deal with bulk images (thermal data and respiratory data) to diagnose the symptoms of COVID-19. Against these works, the proposed spectacle thermal image data analysis model creates an easy and effective way of disease diagnosis deployment strategies. Particularly, the mass detection of disease symptoms needs a more lightweight equipment setup. In this proposed model, each patient's thermal data is collected via the spectacles of medical staff, and the data are analyzed with the help of a complex set of capsule network functions. Comparatively, the conventional capsule network functions are enriched in this proposed model using adequate sampling and data reduction solutions. In this way, the proposed model works effectively for mass thermal data diagnosis applications. In the experimental platform, the proposed and existing models are analyzed in various dimensions (metrics). The comparative results obtained in the experiments just
The dialects of a language hold a significant place in speech processing (SP) applications. The objective of dialect identification is to categorize speech sample data into a specific dialect of a speaker's spoken...
详细信息
暂无评论