Road pricing is an urban traffic management mechanism to reduce traffic ***,most of the road pricing systems based on predefined charging tolls fail to consider the dynamics of urban traffic flows and travelers’deman...
详细信息
Road pricing is an urban traffic management mechanism to reduce traffic ***,most of the road pricing systems based on predefined charging tolls fail to consider the dynamics of urban traffic flows and travelers’demands on the arrival *** this paper,we propose a method to dynamically adjust online road toll based on traffic conditions and travelers’demands to resolve the above-mentioned *** method,based on deep reinforcement learning,automatically allocates the optimal toll for each road during peak hours and guides vehicles to roads with lower toll ***,it further considers travelers’demands to ensure that more vehicles arrive at their destinations before their estimated arrival *** method can increase the traffic volume effectively,as compared to the existing static mechanisms.
An effective task scheduling method can accommodate user needs, boost resource usage, and boost cloud computing's overall efficiency. However, the unchanging task needs are generally the focus of grid computing...
详细信息
An effective task scheduling method can accommodate user needs, boost resource usage, and boost cloud computing's overall efficiency. However, the unchanging task needs are generally the focus of grid computing's job scheduling, leading to low resource usage. Distributing the dynamic user tasks fairly among all cloud nodes is the goal of load balancing, a relatively new field of study. The primary difficulty with cloud computing is load balancing. By making better use of available resources, load balancing methods improve cloud performance. Load balancing primary goal is to lessen the burden on the environment by cutting down on energy use and carbon emissions. The most crucial characteristics that can both satisfy user needs and maximize resource utilization are used to determine the order of priorities. Existing systems often ignore user priority suggestions in favor of optimal scheduling to improve load balancing. Scheduling that takes into account user-guided priorities uses a data-driven strategy, which helps improve load balancing. Scheduling algorithms that take user priorities into account can optimize load distribution more effectively. The primary objective of this research is to provide a priority based randomized load balancing technique that assigns tasks to virtual machines in a random fashion based on criteria such as the number of users, the amount of time the task takes to run, the type of software being used, the cost of the software, and the amount of available resources. This method maximizes system performance by decreasing response time and resource consumption while increasing metrics like fault tolerance and scalability. This system for scheduling tasks not only accommodates user needs but also achieves excellent resource usage. This research proposes a User Task Priority based Resource Allocation with Multi Class Task Scheduling Strategy and Load Balancing (UPRA-MCTSS-LB) Model for enhancing the cloud service quality. The proposed method res
Wireless Sensor Network (WSN) is a network with a good organization that provides efficient communication services. However, high energy usage and attack data sometimes become the key challenges that degrade the entir...
详细信息
This paper introduces the African Bison Optimization(ABO)algorithm,which is based on biological *** is inspired by the survival behaviors of the African bison,including foraging,bathing,jousting,mating,and *** foragin...
详细信息
This paper introduces the African Bison Optimization(ABO)algorithm,which is based on biological *** is inspired by the survival behaviors of the African bison,including foraging,bathing,jousting,mating,and *** foraging behavior prompts the bison to seek a richer food source for *** bison find a food source,they stick around for a while by bathing *** jousting behavior makes bison stand out in the population,then the winner gets the chance to produce offspring in the mating *** eliminating behavior causes the old or injured bison to be weeded out from the herd,thus maintaining the excellent *** above behaviors are translated into ABO by mathematical *** assess the reliability and performance of ABO,it is evaluated on a diverse set of 23 benchmark functions and applied to solve five practical engineering problems with *** findings from the simulation demonstrate that ABO exhibits superior and more competitive performance by effectively managing the trade-off between exploration and exploitation when compared with the other nine popular metaheuristics algorithms.
The development of Deepfakes has become more prevalent with the rise of Generative Adversarial Networks (GANs). Deepfakes are synthetically created, modified images that have been made to look real;they pose severe so...
详细信息
作者:
Jiang, Wei-BangLiu, Xuan-HaoZheng, Wei-LongLu, Bao-LiangShanghai Jiao Tong University
Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Brain Science and Technology Research Center Shanghai200240 China
Recognizing emotions from physiological signals is a topic that has garnered widespread interest, and research continues to develop novel techniques for perceiving emotions. However, the emergence of deep learning has...
详细信息
NeuroProbe is a simple neural network simulator designed by authors specifically for educational purposes focusing on simulating inference phase on a computationally capable embedded hardware, aiming to provide a deep...
详细信息
To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element *** the...
详细信息
To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element *** the constraint of a reconfigurable array,the LSLGM algorithm schedules node from a ready queue to the current reconfigurable cell array *** mapping a node,its successor’s indegree value will be dynamically *** its successor’s indegree is zero,it will be directly scheduled to the ready queue;otherwise,the predecessor must be dynamically *** the predecessor cannot be mapped,it will be scheduled to a blocking *** dynamically adjust the ready node scheduling order,the scheduling function is constructed by exploiting factors,such as node number,node level,and node *** with the loop subgraph-level mapping algorithm,experimental results show that the total cycles of the LSLGM algorithm decreases by an average of 33.0%(PEA44)and 33.9%(PEA_(7×7)).Compared with the epimorphism map algorithm,the total cycles of the LSLGM algorithm decrease by an average of 38.1%(PEA_(4×4))and 39.0%(PEA_(7×7)).The feasibility of LSLGM is verified.
Electronic Health Records (EHR) are crucial for the success of digital healthcare, with a focus on putting consumers at the center of this transformation. However, the digitalization of healthcare records brings along...
详细信息
A novel synthesis method for wideband bandpass filter (BPF) with two in-band conjugate complex transmission zeros is proposed for realizing frequency- and attenuation-reconfigurable in-band notch. A new characteristic...
详细信息
暂无评论