Numerous methods are analysed in detail to improve task schedulingand data security performance in the cloud environment. The methodsinvolve scheduling according to the factors like makespan, waiting time,cost, deadli...
详细信息
Numerous methods are analysed in detail to improve task schedulingand data security performance in the cloud environment. The methodsinvolve scheduling according to the factors like makespan, waiting time,cost, deadline, and popularity. However, the methods are inappropriate forachieving higher scheduling performance. Regarding data security, existingmethods use various encryption schemes but introduce significant serviceinterruption. This article sketches a practical Real-time Application CentricTRS (Throughput-Resource utilization–Success) Scheduling with Data Security(RATRSDS) model by considering all these issues in task scheduling anddata security. The method identifies the required resource and their claim timeby receiving the service requests. Further, for the list of resources as services,the method computes throughput support (Thrs) according to the number ofstatements executed and the complete statements of the service. Similarly, themethod computes Resource utilization support (Ruts) according to the idletime on any duty cycle and total servicing time. Also, the method computesthe value of Success support (Sus) according to the number of completions forthe number of allocations. The method estimates the TRS score (ThroughputResource utilization Success) for different resources using all these supportmeasures. According to the value of the TRS score, the services are rankedand scheduled. On the other side, based on the requirement of service requests,the method computes Requirement Support (RS). The selection of service isperformed and allocated. Similarly, choosing the route according to the RouteSupport Measure (RSM) enforced route security. Finally, data security hasgets implemented with a service-based encryption technique. The RATRSDSscheme has claimed higher performance in data security and scheduling.
Marine aquaculture image segmentation plays a crucial role in managing aquatic resources and environmental protection. Traditional deep learning models rely on manual parameter tuning for image segmentation, which lim...
详细信息
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel...
详细信息
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.
Trust plays an essential role in an individual's decision-making. Traditional trust prediction models rely on pairwise correlations to infer potential relationships between users. However, in the real world, inter...
详细信息
The primary issue of global health today is Cardio-vascular diseases (CVDs) and thus requires accurate predictive models for detecting it early. Quantum technology combined with regular deep learning techniques are us...
详细信息
Deep and machine learning models have become pivotal in medical image analysis, especially for diagnosing COVID-19 using X-rays and CT scans. While these models, including transfer learning-based approaches, have achi...
详细信息
This paper proposes an innovative user authentication system tailored for high-value asset transactions, leveraging advancements in brainwave analysis and emotional state detection. Traditional authentication methods ...
详细信息
The automatic detection of sign language from hand gesture images is fundamental for effective human-computer interaction, especially for individuals with hearing and speech disorders. Achieving accurate detection and...
详细信息
This article summarizes the Blockchain technology along with the artificial intelligence. The cutting edge technology is described in a elaborated manner along with its advantages, disadvantages and its impact with th...
详细信息
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detecti...
详细信息
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL). Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction.
暂无评论