Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
The integration of edge computing into satellite networks offers a promising solution for extending computational services to remote and underserved areas. To effectively provide a variety of computing services, it is...
详细信息
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In thi...
详细信息
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of large multimodal models, such as GPT4V and Gemini, in various text-related visual tasks including text recognition, scene text-centric visual question answering(VQA), document-oriented VQA, key information extraction(KIE), and handwritten mathematical expression recognition(HMER). To facilitate the assessment of optical character recognition(OCR) capabilities in large multimodal models, we propose OCRBench, a comprehensive evaluation benchmark. OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression *** importantly, the baseline results presented in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal *** evaluation pipeline and benchmark are available at https://***/Yuliang-Liu/Multimodal OCR.
Vehicle-to-infrastructure (V2I) network is a new paradigm of wireless system with special topology where roadside units (RSUs) are linearly deployed along the roadside and vehicles linearly move on the road. For such ...
详细信息
Vehicle Color Recognition(VCR)plays a vital role in intelligent traffic management and criminal investigation ***,the existing vehicle color datasets only cover 13 classes,which can not meet the current actual ***,alt...
详细信息
Vehicle Color Recognition(VCR)plays a vital role in intelligent traffic management and criminal investigation ***,the existing vehicle color datasets only cover 13 classes,which can not meet the current actual ***,although lots of efforts are devoted to VCR,they suffer from the problem of class imbalance in *** address these challenges,in this paper,we propose a novel VCR method based on Smooth Modulation Neural Network with Multi-Scale Feature Fusion(SMNN-MSFF).Specifically,to construct the benchmark of model training and evaluation,we first present a new VCR dataset with 24 vehicle classes,Vehicle Color-24,consisting of 10091 vehicle images from a 100-hour urban road surveillance ***,to tackle the problem of long-tail distribution and improve the recognition performance,we propose the SMNN-MSFF model with multiscale feature fusion and smooth *** former aims to extract feature information from local to global,and the latter could increase the loss of the images of tail class instances for training with ***,comprehensive experimental evaluation on Vehicle Color-24 and previously three representative datasets demonstrate that our proposed SMNN-MSFF outperformed state-of-the-art VCR *** extensive ablation studies also demonstrate that each module of our method is effective,especially,the smooth modulation efficiently help feature learning of the minority or tail *** Color-24 and the code of SMNN-MSFF are publicly available and can contact the author to obtain.
Sewing thread segmentation can help locate the defects in fabric sewing process, which is a challenging problem in factory quality control. In this paper, we propose a twin U-shaped Transformer Network (TUTNet) for se...
详细信息
Compared with traditional environments,the cloud environment exposes online services to additional vulnerabilities and threats of cyber attacks,and the cyber security of cloud platforms is becoming increasingly promin...
详细信息
Compared with traditional environments,the cloud environment exposes online services to additional vulnerabilities and threats of cyber attacks,and the cyber security of cloud platforms is becoming increasingly prominent.A piece of code,known as a Webshell,is usually uploaded to the target servers to achieve multiple *** Webshell attacks has become a hot spot in current ***,the traditional Webshell detectors are not built for the cloud,making it highly difficult to play a defensive role in the cloud ***,a Webshell detection system based on deep learning that is successfully applied in various scenarios,is proposed in this *** system contains two important components:gray-box and neural network *** gray-box analyzer defines a series of rules and algorithms for extracting static and dynamic behaviors from the code to make the decision *** neural network analyzer transforms suspicious code into Operation Code(OPCODE)sequences,turning the detection task into a classification *** experiment results show that SmartEagleEye achieves an encouraging high detection rate and an acceptable false-positive rate,which indicate its capability to provide good protection for the cloud environment.
Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least a...
详细信息
Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least amount of power from a large number of Reed-Muller(RM) logical expressions. The existing approach for optimizing the power of multi-output mixed polarity RM(MPRM) logic circuits suffer from poor optimization results. To solve this problem, a whale optimization algorithm with two-populations strategy and mutation strategy(TMWOA) is proposed in this paper. The two-populations strategy speeds up the convergence of the algorithm by exchanging information about the two-populations. The mutation strategy enhances the ability of the algorithm to jump out of the local optimal solutions by using the information of the current optimal solution. Based on the TMWOA, we propose a multi-output MPRM logic circuits power optimization approach(TMMPOA). Experiments based on the benchmark circuits of the Microelectronics Center of North Carolina(MCNC) validate the effectiveness and superiority of the proposed TMMPOA.
Generative image steganography has gained significant attention due to its ability to hide secret data during image generation. However, existing generative image steganography methods still face challenges in terms o...
详细信息
In previous studies on facial video depression recognition, although convolutional neural network (CNN) has become a mainstream method, its performance still has room for improvement due to the insufficient extraction...
详细信息
暂无评论