Partial multi-label learning(PML) allows learning from rich-semantic objects with inaccurate annotations, where a set of candidate labels are assigned to each training example but only some of them are valid. Existi...
详细信息
Partial multi-label learning(PML) allows learning from rich-semantic objects with inaccurate annotations, where a set of candidate labels are assigned to each training example but only some of them are valid. Existing approaches rely on disambiguation to tackle the PML problem, which aims to correct noisy candidate labels by recovering the ground-truth labeling information ahead of prediction model induction. However, this dominant strategy might be suboptimal as it usually needs extra assumptions that cannot be fully satisfied in real-world scenarios. Instead of label correction, we investigate another strategy to tackle the PML problem, where the potential ambiguity in PML data is eliminated by correcting instance features in a label-specific manner. Accordingly, a simple yet effective approach named PASE, i.e., partial multi-label learning via label-specific feature corrections, is proposed. Under a meta-learning framework, PASElearns to exert label-specific feature corrections so that potential ambiguity specific to each class label can be eliminated and the desired prediction model can be induced on these corrected instance features with the provided candidate labels. Comprehensive experiments on a wide range of synthetic and real-world data sets validate the effectiveness of the proposed approach.
The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from the power of few-shot class-incremental learning(FSCIL), deep learning models can continuously recognize new cla...
详细信息
The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from the power of few-shot class-incremental learning(FSCIL), deep learning models can continuously recognize new classes with only a few samples. The difficulty is that limited instances of new classes will lead to overfitting and exacerbate the catastrophic forgetting of the old classes. Most previous works alleviate the above problems by imposing strong constraints on the model structure or parameters, but ignoring embedding network transferability and classifier adaptation(CA), failing to guarantee the efficient utilization of visual features and establishing relationships between old and new classes. In this paper, we propose a simple and novel approach from two perspectives: embedding bias and classifier bias. The method learns an embedding augmented(EA) network with cross-class transfer and class-specific discriminative abilities based on self-supervised learning and modulated attention to alleviate embedding bias. Based on the adaptive incremental classifier learning scheme to realize incremental learning capability,guiding the adaptive update of prototypes and feature embeddings to alleviate classifier bias. We conduct extensive experiments on two popular natural image datasets and two medical datasets. The experiments show that our method is significantly better than the baseline and achieves state-of-the-art results.
In modern vehicular networks, the absence of infrastructure support such as Roadside Units (RSUs) presents significant challenges for efficient task offloading and allocation. Limited computational capabilities of ind...
详细信息
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security pr...
详细信息
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security problems brought by the mobile *** for Android system,due to its open source nature,malicious applications continue to emerge,which greatly threatens the data security of ***,this paper proposes a method of trusted embedded static measurement and data transmission protection architecture based on Android to reduce the risk of data leakage in the process of terminal storage and *** conducted detailed data and feasibility analysis of the proposed method from the aspects of time consumption,storage overhead and *** experimental results show that this method can detect Android system layer attacks such as self-booting of the malicious module and improve the security of data encryption and transmission process *** with the native system,the additional performance overhead is small.
1 Introduction In Natural Language Processing(NLP),topic modeling is a class of methods used to analyze and explore textual corpora,i.e.,to discover the underlying topic structures from text and assign text pieces to ...
详细信息
1 Introduction In Natural Language Processing(NLP),topic modeling is a class of methods used to analyze and explore textual corpora,i.e.,to discover the underlying topic structures from text and assign text pieces to different *** NLP,a topic means a set of relevant words appearing together in a particular pattern,representing some specific *** is beneficial for tracking social media trends,constructing knowledge graphs,and analyzing writing *** modeling has always been an area of extensive research in *** methods like Latent Semantic Analysis(LSA)and Latent Dirichlet Allocation(LDA),based on the“bag of words”(BoW)model,often fail to grasp the semantic nuances of the text,making them less effective in contexts involving polysemy or data noise,especially when the amount of data is small.
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained ...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification ***,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the *** address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature ***,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective *** continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network *** results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.
Instance segmentation has drawn mounting attention due to its significant ***,high computational costs have been widely acknowledged in this domain,as the instance mask is generally achieved by pixel-level *** this pa...
详细信息
Instance segmentation has drawn mounting attention due to its significant ***,high computational costs have been widely acknowledged in this domain,as the instance mask is generally achieved by pixel-level *** this paper,we present a conceptually efficient contour regression network based on the you only look once(YOLO)architecture named YOLO-CORE for instance *** mask of the instance is efficiently acquired by explicit and direct contour regression using our designed multiorder constraint consisting of a polar distance loss and a sector *** proposed YOLO-CORE yields impressive segmentation performance in terms of both accuracy and *** achieves 57.9%AP@0.5 with 47 FPS(frames per second)on the semantic boundaries dataset(SBD)and 51.1%AP@0.5 with 46 FPS on the COCO *** superior performance achieved by our method with explicit contour regression suggests a new technique line in the YOLO-based image understanding ***,our instance segmentation design can be flexibly integrated into existing deep detectors with negligible computation cost(65.86 BFLOPs(billion float operations per second)to 66.15 BFLOPs with the YOLOv3 detector).
Long-tailed multi-label text classification aims to identify a subset of relevant labels from a large candidate label set, where the training datasets usually follow long-tailed label distributions. Many of the previo...
详细信息
Long-tailed multi-label text classification aims to identify a subset of relevant labels from a large candidate label set, where the training datasets usually follow long-tailed label distributions. Many of the previous studies have treated head and tail labels equally, resulting in unsatisfactory performance for identifying tail labels. To address this issue, this paper proposes a novel learning method that combines arbitrary models with two steps. The first step is the “diverse ensemble” that encourages diverse predictions among multiple shallow classifiers, particularly on tail labels, and can improve the generalization of tail *** second is the “error correction” that takes advantage of accurate predictions on head labels by the base model and approximates its residual errors for tail labels. Thus, it enables the “diverse ensemble” to focus on optimizing the tail label performance. This overall procedure is called residual diverse ensemble(RDE). RDE is implemented via a single-hidden-layer perceptron and can be used for scaling up to hundreds of thousands of labels. We empirically show that RDE consistently improves many existing models with considerable performance gains on benchmark datasets, especially with respect to the propensity-scored evaluation ***, RDE converges in less than 30 training epochs without increasing the computational overhead.
作者:
Du, AnJia, JieChen, JianWang, XingweiHuang, MingNortheastern University
School of Computer Science and Engineering Engineering Research Center of Security Technology of Complex Network System Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Shenyang110819 China Northeastern University
School of Computer Science and Engineering Shenyang110819 China
Mobile edge computing (MEC) integrated with network Functions Virtualization (NFV) helps run a wide range of services implemented by Virtual network Functions (VNFs) deployed at MEC networks. This emerging paradigm of...
详细信息
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...
详细信息
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
暂无评论