咨询与建议

限定检索结果

文献类型

  • 6,070 篇 期刊文献
  • 3,871 篇 会议
  • 6 册 图书

馆藏范围

  • 9,947 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6,533 篇 工学
    • 4,385 篇 计算机科学与技术...
    • 3,557 篇 软件工程
    • 1,318 篇 信息与通信工程
    • 750 篇 控制科学与工程
    • 727 篇 电气工程
    • 727 篇 生物工程
    • 638 篇 光学工程
    • 623 篇 电子科学与技术(可...
    • 462 篇 生物医学工程(可授...
    • 424 篇 化学工程与技术
    • 380 篇 机械工程
    • 280 篇 仪器科学与技术
    • 252 篇 材料科学与工程(可...
    • 208 篇 动力工程及工程热...
    • 189 篇 交通运输工程
    • 187 篇 核科学与技术
    • 176 篇 网络空间安全
  • 4,164 篇 理学
    • 1,792 篇 数学
    • 1,613 篇 物理学
    • 875 篇 生物学
    • 576 篇 统计学(可授理学、...
    • 439 篇 化学
    • 261 篇 系统科学
  • 1,597 篇 管理学
    • 860 篇 管理科学与工程(可...
    • 791 篇 图书情报与档案管...
    • 291 篇 工商管理
  • 489 篇 医学
    • 401 篇 临床医学
    • 293 篇 基础医学(可授医学...
    • 184 篇 药学(可授医学、理...
  • 234 篇 法学
    • 187 篇 社会学
  • 131 篇 经济学
  • 95 篇 农学
  • 85 篇 教育学
  • 34 篇 军事学
  • 29 篇 文学
  • 21 篇 艺术学

主题

  • 298 篇 semantics
  • 219 篇 feature extracti...
  • 207 篇 deep learning
  • 148 篇 training
  • 143 篇 machine learning
  • 127 篇 computational mo...
  • 99 篇 data mining
  • 98 篇 task analysis
  • 94 篇 convolution
  • 86 篇 accuracy
  • 85 篇 graph neural net...
  • 82 篇 hadron colliders
  • 81 篇 image segmentati...
  • 81 篇 predictive model...
  • 79 篇 object detection
  • 77 篇 reinforcement le...
  • 76 篇 visualization
  • 72 篇 contrastive lear...
  • 72 篇 data models
  • 69 篇 federated learni...

机构

  • 446 篇 department of ph...
  • 407 篇 cavendish labora...
  • 352 篇 department for p...
  • 302 篇 institute of phy...
  • 295 篇 institute of phy...
  • 278 篇 faculty of scien...
  • 269 篇 department of ph...
  • 267 篇 west university ...
  • 262 篇 kirchhoff-instit...
  • 261 篇 oliver lodge lab...
  • 260 篇 department of ph...
  • 256 篇 department of ph...
  • 252 篇 physikalisches i...
  • 250 篇 university of ch...
  • 248 篇 department of ph...
  • 238 篇 infn e laborator...
  • 238 篇 school of comput...
  • 233 篇 department of ph...
  • 231 篇 universidade fed...
  • 227 篇 fakultät für phy...

作者

  • 212 篇 c. alexa
  • 211 篇 c. amelung
  • 209 篇 g. bella
  • 209 篇 d. calvet
  • 208 篇 j. m. izen
  • 208 篇 n. orlando
  • 208 篇 y. tayalati
  • 207 篇 j. strandberg
  • 207 篇 g. spigo
  • 207 篇 v. chiarella
  • 206 篇 f. siegert
  • 198 篇 a. dimitrievska
  • 196 篇 f. deliot
  • 192 篇 y. abulaiti
  • 191 篇 r. ströhmer
  • 189 篇 m. rijssenbeek
  • 189 篇 s. jin
  • 189 篇 g. gaudio
  • 188 篇 s. mohapatra
  • 179 篇 s. veneziano

语言

  • 8,848 篇 英文
  • 911 篇 其他
  • 205 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=School of Computer Science and Shanghai Key Laboratory of Data Science"
9947 条 记 录,以下是411-420 订阅
排序:
Multicomponent Similarity Graphs for Cross-Network Node Classification
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第3期5卷 1411-1424页
作者: Zhang, Yuhong Shi, Congmei Li, Xinzheng Zhang, Zan Hu, Xuegang School of Computer Science and Information Engineering Hefei University of Technology Hefei230601 China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei230088 China Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology Ministry of Education Hefei230009 China
Cross-network node classification aims to train a classifier for an unlabeled target network using a source network with rich labels. In applications, the degree of nodes mostly conforms to the long-tail distribution,... 详细信息
来源: 评论
Hypernetwork-Assisted Parameter-Efficient Fine-Tuning with Meta-Knowledge Distillation for Domain Knowledge Disentanglement
Hypernetwork-Assisted Parameter-Efficient Fine-Tuning with M...
收藏 引用
2024 Findings of the Association for Computational Linguistics: NAACL 2024
作者: Li, Changqun Wang, Linlin Lin, Xin Huang, Shizhou He, Liang School of Computer Science and Technology East China Normal University China Shanghai Key Laboraiory of Multdimensional Infomation Procesing China Shanghai Artificial Intelligence Laboratory China
Domain adaptation from labeled source domains to the target domain is important in practical summarization scenarios. However, the key challenge is domain knowledge disentanglement. In this work, we explore how to dis... 详细信息
来源: 评论
Dual-Modeling Decouple Distillation for Unsupervised Anomaly Detection  24
Dual-Modeling Decouple Distillation for Unsupervised Anomaly...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Liu, Xinyue Wang, Jianyuan Leng, Biao Zhang, Shuo School of Computer Science and Engineering Beihang University Beijing China Key Laboratory of Intelligent Bionic Unmanned Systems Ministry of Education School of Intelligence Science and Technology University of Science and Technology Beijing Beijing China Beijing Key Lab of Traffic Data Analysis and Mining School of Computer & Technology Beijing Jiaotong University Beijing China
Knowledge distillation based on student-teacher network is one of the mainstream solution paradigms for the challenging unsupervised Anomaly Detection task, utilizing the difference in representation capabilities of t... 详细信息
来源: 评论
ControlSynth Neural ODEs: Modeling Dynamical Systems with Guaranteed Convergence  38
ControlSynth Neural ODEs: Modeling Dynamical Systems with Gu...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Mei, Wenjie Zheng, Dongzhe Li, Shihua The School of Automation and the Key Laboratory of MCCSE of the Ministry of Education Southeast University Nanjing China The Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Neural ODEs (NODEs) are continuous-time neural networks (NNs) that can process data without the limitation of time intervals. They have advantages in learning and understanding the evolution of complex real dynamics. ...
来源: 评论
Mixture of Experts for Audio-Visual Learning  38
Mixture of Experts for Audio-Visual Learning
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Cheng, Ying Li, Yang He, Junjie Feng, Rui School of Computer Science Fudan University China Shanghai Key Laboratory of Intelligent Information Processing China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China
With the rapid development of multimedia technology, audio-visual learning has emerged as a promising research topic within the field of multimodal analysis. In this paper, we explore parameter-efficient transfer lear...
来源: 评论
P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Guochao Ding, Zepeng Shi, Yuchen Yang, Deqing School of Data Science Fudan University Shanghai China Shanghai Key Laboratory of Data Science Shanghai China
In recent years, the rise of large language models (LLMs) has made it possible to directly achieve named entity recognition (NER) without any demonstration samples or only using a few samples through in-context learni... 详细信息
来源: 评论
Bipartite synchronization of stochastic coupled systems with hybrid time-varying delays via asynchronous impulsive control
收藏 引用
IEEE Transactions on Automation science and Engineering 2025年 22卷 15778-15791页
作者: Liu, Yan Sun, Yiliang Zhou, Hui Tiangong University Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems School of Computer Science and Technology Tianjin 300387 China Harbin Institute of Technology (Weihai) Department of Mathematics Weihai 264209 China Fuzhou University College of Computer and Data Science Fuzhou 350108 China
This paper investigates the bipartite synchronization of stochastic coupled systems with hybrid time-varying delays and Markov jump via asynchronous impulsive control. Unlike existing studies, the asynchronous impulse... 详细信息
来源: 评论
Reason from Fallacy: Enhancing Large Language Models’ Logical Reasoning through Logical Fallacy Understanding
arXiv
收藏 引用
arXiv 2024年
作者: Li, Yanda Wang, Dixuan Liang, Jiaqing Jiang, Guochao He, Qianyu Xiao, Yanghua Yang, Deqing School of Data Science Fudan University Shanghai China Shanghai Key Laboratory of Data Science Shanghai China
Large Language Models (LLMs) have demonstrated good performance in many reasoning tasks, but they still struggle with some complicated reasoning tasks including logical reasoning. One non-negligible reason for LLMs’ ... 详细信息
来源: 评论
Representation learning via an integrated autoencoder for unsupervised domain adaptation
收藏 引用
Frontiers of computer science 2023年 第5期17卷 75-87页
作者: Yi ZHU Xindong WU Jipeng QIANG Yunhao YUAN Yun LI School of Information Engineering Yangzhou UniversityYangzhou 225127China Key Laboratory of Knowledge Engineering with Big Data(Ministry of Education of China) Hefei University of TechnologyHefei 230009China School of Computer Science and Information Engineering Hefei University of TechnologyHefei 230601China
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target *** key bott... 详细信息
来源: 评论
Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective
Quantifying and Mitigating Unimodal Biases in Multimodal Lar...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Chen, Meiqi Cao, Yixin Zhang, Yan Lu, Chaochao State Key Laboratory of General Artificial Intelligence Peking University Beijing China School of Intelligence Science and Technology Peking University China School of Computer Science Fudan University China Shanghai Artificial Intelligence Laboratory China
Recent advancements in Large Language Models (LLMs) have facilitated the development of Multimodal LLMs (MLLMs). Despite their impressive capabilities, MLLMs often suffer from over-reliance on unimodal biases (e.g., l... 详细信息
来源: 评论