Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to t...
详细信息
Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to the black-box nature of deep learning. It is an urgent and challenging task to formally reason about the behaviors of RNNs. To this end, we first present an extension of linear-time temporal logic to reason about properties with respect to RNNs, such as local robustness, reachability, and some temporal properties. Based on the proposed logic, we formalize the verification obligation as a Hoare-like triple, from both qualitative and quantitative perspectives. The former concerns whether all the outputs resulting from the inputs fulfilling the pre-condition satisfy the post-condition, whereas the latter is to compute the probability that the post-condition is satisfied on the premise that the inputs fulfill the pre-condition. To tackle these problems, we develop a systematic verification framework, mainly based on polyhedron propagation, dimension-preserving abstraction, and the Monte Carlo sampling. We also implement our algorithm with a prototype tool and conduct experiments to demonstrate its feasibility and efficiency.
Traditional autonomous navigation methods for mobile robots mainly rely on geometric feature-based LiDAR scan-matching algorithms, but in complex environments, this method is often affected due to the presence of movi...
详细信息
Due to limited memory and computing resources, the application of deep neural networks on embedded and mobile devices is still a great challenge. To tackle this problem, this paper proposes a lightweight super-resolut...
详细信息
With recent advancements in robotic surgery,notable strides have been made in visual question answering(VQA).Existing VQA systems typically generate textual answers to questions but fail to indicate the location of th...
详细信息
With recent advancements in robotic surgery,notable strides have been made in visual question answering(VQA).Existing VQA systems typically generate textual answers to questions but fail to indicate the location of the relevant content within the *** limitation restricts the interpretative capacity of the VQA models and their abil-ity to explore specific image *** address this issue,this study proposes a grounded VQA model for robotic surgery,capable of localizing a specific region during answer *** inspiration from prompt learning in language models,a dual-modality prompt model was developed to enhance precise multimodal information ***,two complementary prompters were introduced to effectively integrate visual and textual prompts into the encoding process of the model.A visual complementary prompter merges visual prompt knowl-edge with visual information features to guide accurate *** textual complementary prompter aligns vis-ual information with textual prompt knowledge and textual information,guiding textual information towards a more accurate inference of the ***,a multiple iterative fusion strategy was adopted for comprehensive answer reasoning,to ensure high-quality generation of textual and grounded *** experimental results vali-date the effectiveness of the model,demonstrating its superiority over existing methods on the EndoVis-18 and End-oVis-17 datasets.
Underwater acoustic sensor networks (UASNs) are highly sensitive to collisions due to the unique characteristics of underwater acoustic signal propagation. Thus, developing medium access control (MAC) protocols that c...
详细信息
Hallucination, or the generation of incorrect or fabricated information, remains a critical challenge in large language models (LLMs), particularly in high-stake domains such as legal question answering (QA). In order...
详细信息
Multimodal fake news detection has become one of the most crucial issues on social media platforms. Although existing methods have achieved advanced performance, two main challenges persist: (1) Under-performed multim...
详细信息
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of th...
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of the deep learning models, i.e., neural architectures with parameters trained over a dataset, is crucial to our daily living and economy.
Multi-view multi-person 3D human pose estimation is a hot topic in the field of human pose estimation due to its wide range of application *** the introduction of end-to-end direct regression methods,the field has ent...
详细信息
Multi-view multi-person 3D human pose estimation is a hot topic in the field of human pose estimation due to its wide range of application *** the introduction of end-to-end direct regression methods,the field has entered a new stage of ***,the regression results of joints that are more heavily influenced by external factors are not accurate enough even for the optimal *** this paper,we propose an effective feature recalibration module based on the channel attention mechanism and a relative optimal calibration strategy,which is applied to themulti-viewmulti-person 3D human pose estimation task to achieve improved detection accuracy for joints that are more severely affected by external ***,it achieves relative optimal weight adjustment of joint feature information through the recalibration module and strategy,which enables the model to learn the dependencies between joints and the dependencies between people and their corresponding *** call this method as the Efficient Recalibration Network(ER-Net).Finally,experiments were conducted on two benchmark datasets for this task,Campus and Shelf,in which the PCP reached 97.3% and 98.3%,respectively.
Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribu...
详细信息
Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights *** introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced *** the same time,a weighted tree structure is constructed to simplify the expression of access structure *** conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal *** scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.
暂无评论