Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical *** study prop...
详细信息
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical *** study proposes a novel end-to-end disparity estimation model to address these *** approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting *** study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and *** model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video *** results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing ***,the model exhibited faster convergence during training,contributing to overall performance *** study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
Recently, the attention mechanism has been introduced into object tracking, making significant improvements in tracking performance. However, the tracking target often undergoes deformation during tracking, which can ...
详细信息
Intellectual disability (ID), a developmental condition often stemming from prenatal or postnatal factors, exerts a profound influence on individuals' lives and necessitates timely intervention. Conventional scree...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
The emergence of 5G networks has enabled the deployment of a two-tier edge and vehicular-fog network. It comprises Multi-access Edge Computing (MEC) and Vehicular-Fogs (VFs), strategically positioned closer to Interne...
详细信息
Facial expression recognition is a challenging task when neural network is applied to pattern recognition. Most of the current recognition research is based on single source facial data, which generally has the disadv...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameter...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameters are chosen. The purpose of this research is to present the corrosion prevention mechanism of the PCCP technique by taking into account the effects of duty cycle as well as frequency, modeling the relationships between pulse parameters(frequency and duty cycle) and system outputs(corrosion rate, protective current and pipe-to-soil potential) and finally identifying the most effective protection conditions over a wide range of frequency(2–10 kHz) and duty cycle(25%-75%). For this, pipe-to-soil potential, pH, current and power consumption, corrosion rate, surface deposits and investigation of pitting corrosion were taken into account. To model the input-output relationship in the PCCP method, a data-driven machine learning approach was used by training an artificial neural network(ANN). The results revealed that the PCCP system could yield the best protection conditions at 10 kHz frequency and 50% duty cycle, resulting in the longest protection length with the lowest corrosion rate at a consumption current 0.3 time that of the DCCP method. In the frequency range of 6–10 kHz and duty cycles of 50%-75%, SEM images indicated a uniform distribution of calcite deposits and no pits on cathode surface.
Heads-up computing aims to provide synergistic digital assistance that minimally interferes with users' on-the-go daily activities. Currently, the input modalities of heads-up computing are mainly voice and finger...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactiv...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication(S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's(BS's) non-line-of-sight(NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication(ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ...
详细信息
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their *** proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their ***,two distinct kinds of features are obtained from the segmented images to help identify the objects of *** Artificial Neural Network(ANN)is then used to recognize the objects based on their *** were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested *** findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.
暂无评论