The pixel-wise dense prediction tasks based on weakly supervisions currently use Class Attention Maps(CAMs)to generate pseudo masks as ***,existing methods often incorporate trainable modules to expand the immature cl...
详细信息
The pixel-wise dense prediction tasks based on weakly supervisions currently use Class Attention Maps(CAMs)to generate pseudo masks as ***,existing methods often incorporate trainable modules to expand the immature class activation maps,which can result in significant computational overhead and complicate the training *** this work,we investigate the semantic structure information concealed within the CNN network,and propose a semantic structure aware inference(SSA)method that utilizes this information to obtain high-quality CAM without any additional training ***,the semantic structure modeling module(SSM)is first proposed to generate the classagnostic semantic correlation representation,where each item denotes the affinity degree between one category of objects and all the ***,the immature CAM are refined through a dot product operation that utilizes semantic structure ***,the polished CAMs from different backbone stages are fused as the *** advantage of SSA lies in its parameter-free nature and the absence of additional training costs,which makes it suitable for various weakly supervised pixel-dense prediction *** conducted extensive experiments on weakly supervised object localization and weakly supervised semantic segmentation,and the results confirm the effectiveness of SSA.
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
The virtual private cloud service currently lacks a real-time end-to-end consistency validation mechanism, which prevents tenants from receiving immediate feedback on their requests. Existing solutions consume excessi...
详细信息
The virtual private cloud service currently lacks a real-time end-to-end consistency validation mechanism, which prevents tenants from receiving immediate feedback on their requests. Existing solutions consume excessive communication and computational resources in such large-scale cloud environments, and suffer from poor timeliness. To address these issues, we propose a lightweight consistency validation mechanism that includes real-time incremental validation and periodic full-scale validation. The former leverages message layer aggregation to enable tenants to swiftly determine the success of their requests on hosts with minimal communication overhead. The latter utilizes lightweight validation checksums to compare the expected and actual states of hosts locally, while efficiently managing the checksums of various host entries using inverted indexing. This approach enables us to efficiently validate the complete local configurations within the limited memory of hosts. In summary, our proposed mechanism achieves closed-loop implementation for new requests and ensures their long-term effectiveness.
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data r...
详细信息
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data redaction. However, the development of redactable blockchain is now obstructed by three limitations, which are data privacy breaches, high communication overhead, and low searching efficiency, respectively. In this paper, we propose PriChain, the first efficient privacy-preserving fine-grained redactable blockchain in decentralized settings. PriChain provides data owners with rights to control who can read and redact on-chain data while maintaining downward compatibility, ensuring the one who can redact will be able to read. Specifically, inspired by the concept of multi-authority attribute-based encryption, we utilize the isomorphism of the access control tree, realizing fine-grained redaction mechanism, downward compatibility, and collusion resistance. With the newly designed structure, PriChain can realize O(n) communication and storage overhead compared to prior O(n2) schemes. Furthermore, we integrate multiple access trees into a tree-based dictionary, optimizing searching efficiency. Theoretical analysis proves that PriChain is secure against the chosen-plaintext attack and has competitive complexity. The experimental evaluations show that PriChain realizes 10× efficiency improvement of searching and 100× lower communication and storage overhead on average compared with existing schemes.
Few-Shot Action Recognition (FSAR) aims to recognize novel class action with limited annotated training data from the same class. Most FSAR methods subconsciously follow the few-shot image classification solutions by ...
详细信息
From the perspective of state-channel interaction,standard quantum teleportation can be viewed as a communication process characterized by both input and output,functioning as a quantum depolarizing *** achieve a prec...
详细信息
From the perspective of state-channel interaction,standard quantum teleportation can be viewed as a communication process characterized by both input and output,functioning as a quantum depolarizing *** achieve a precise quantification of the quantumness introduced by this channel,we examine its uncertainties,which encompass both statedependent and state-independent ***,for qudit systems,we provide general formulas for these *** analyze the uncertainties associated with standard quantum teleportation when induced by isotropic states,Werner states,and X-states,and we elucidate the correlation between these uncertainties and the parameters of the specific mixed *** findings demonstrate the validity of quantifying these uncertainties.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Witness encryption(WE) is a novel type of cryptographic primitive that enables a message to be encrypted via an NP instance. Anyone who possesses a solution to this instance(i.e., a witness) can then recover the messa...
详细信息
Witness encryption(WE) is a novel type of cryptographic primitive that enables a message to be encrypted via an NP instance. Anyone who possesses a solution to this instance(i.e., a witness) can then recover the message from the *** introduce a variant of WE that allows ciphertext updates, referred to as ciphertext updateable WE(CUWE). With CUWE,a user can encrypt a message using an instance x and a tag t, and those who possess a valid witness w for x and match the access policy defined by tag t can decrypt the message. Furthermore, CUWE allows for the use of an update token to change the tag t of ciphertext to a different tag. This feature enables fine-grained access control, even after the ciphertext has been created, thereby significantly increasing the usefulness of the WE scheme. We demonstrate that such a WE framework with an updatable ciphertext scheme can be constructed using our puncturable instance-based deterministic encryption(PIDE) and indistinguishability obfuscation(iO). We also propose an instantiation of PIDE utilizing puncturable pseudorandom functions(PRFs) that provide(selectively) indistinguishable security. Finally, we expand our CUWE to ciphertext-updatable functional WE(CUFWE), which offers enhanced data access control.
Thanks to its ubiquity,using radio frequency (RF) signals for sensing has found widespread *** traditional integrated sensing and communication systems,such as joint radar-communication systems,common sensing tasks in...
Thanks to its ubiquity,using radio frequency (RF) signals for sensing has found widespread *** traditional integrated sensing and communication systems,such as joint radar-communication systems,common sensing tasks include target localization and ***,increasingly intelligent systems,such as smart agriculture,lowaltitude economy,and smart healthcare,have demanded more comprehensive and continuous information sensing capabilities to support higher-level *** sensing has the potential to offer both spatial and temporal continuity,meeting the multi-dimensional sensing needs of these intelligent ***,numerous advanced systems have been proposed,expanding the application scope of RF sensing to be more pervasive,including discrete state ubiquitous sensing tasks (such as material identification [1]),and continuous state ubiquitous sensing tasks (such as health monitoring [2]).With the advent of the 6G era,it is anticipated that the sensing potential of RF systems will be further unleashed.
Secure vector dominance is a key cryptographic primitive in secure computational geometry (SCG), determining the dominance relationship of vectors between two participants without revealing their private information. ...
详细信息
暂无评论