This study introduces a novel algorithm to detect and identify radioactive materials in urban settings using time-series detector response data. To address the challenges posed by varying backgrounds and to enhance th...
详细信息
This study introduces a novel algorithm to detect and identify radioactive materials in urban settings using time-series detector response data. To address the challenges posed by varying backgrounds and to enhance the quality and reliability of the energy spectrum data, we devised a temporal energy window. This partitioned the time-series detector response data, resulting in energy spectra that emphasize the vital information pertaining to radioactive materials. We then extracted characteristic features of these energy spectra, relying on the formation mechanism and measurement principles of the gammaray instrument spectrum. These features encompassed aggregated counts, peak-to-flat ratios, and peak-to-peak ratios. This methodology not only simplified the interpretation of the energy spectra's physical significance but also eliminated the necessity for peak searching and individual peak analyses. Given the requirements of imbalanced multi-classification, we created a detection and identification model using a weighted k-nearest neighbors(KNN) framework. This model recognized that energy spectra of identical radioactive materials exhibit minimal inter-class similarity. Consequently, it considerably boosted the classification accuracy of minority classes, enhancing the classifier's overall efficacy. We also executed a series of comparative experiments. Established methods for radionuclide identification classification, such as standard KNN, support vector machine, Bayesian network, and random tree, were used for comparison purposes. Our proposed algorithm realized an F1 measure of 0.9868 on the time-series detector response data, reflecting a minimum enhancement of 0.3% in comparison with other techniques. The results conclusively show that our algorithm outperforms others when applied to time-series detector response data in urban contexts.
There is a growing interest in sustainable ecosystem development, which includes methods such as scientific modeling, environmental assessment, and development forecasting and planning. However, due to insufficient su...
详细信息
Heavy-duty freight railway axles are no less important than those of passenger trains, owing to the potentially catastrophic results caused by the derailment of trains carrying hazardous substances. Intrinsic and extr...
详细信息
Heavy-duty freight railway axles are no less important than those of passenger trains, owing to the potentially catastrophic results caused by the derailment of trains carrying hazardous substances. Intrinsic and extrinsic imperfections challenge classical design theories built based on the safe life concept, and damage tolerance assessment becomes vital for the safety and reliability of long-term serviced railway axles, as pits and scratches are common defects for heavy-duty railway axles. In this work, four-point rotating bending fatigue tests of AAR-CM railway axle steel specimens with semicircular and circumferential groove notches are conducted. The fatigue limit of the semicircular notched specimens was evaluated based on fracture mechanics theory, in which non-conservative results are obtained by the El Haddad model and the S–N curves of circumferential groove notched specimens are correlated by the theory of critical distance(TCD).
Permissioned blockchain is a promising methodology to build zero-trust storage foundation with trusted data storage and sharing for the zero-trust network. However, the inherent full-backup feature of the permissioned...
详细信息
With the rapid development of mobile communication technology and intelligent applications,the quantity of mobile devices and data traffic in networks have been growing exponentially,which poses a great burden to netw...
详细信息
With the rapid development of mobile communication technology and intelligent applications,the quantity of mobile devices and data traffic in networks have been growing exponentially,which poses a great burden to networks and brings huge challenge to servicing user *** caching,which utilizes the storage and computation resources of the edge to bring resources closer to end users,is a promising way to relieve network burden and enhance user *** this paper,we aim to survey the edge caching techniques from a comprehensive and systematic *** first present an overview of edge caching,summarizing the three key issues regarding edge caching,i.e.,where,what,and how to cache,and then introducing several significant caching *** then carry out a detailed and in-depth elaboration on these three issues,which correspond to caching locations,caching objects,and caching strategies,*** particular,we innovate on the issue“what to cache”,interpreting it as the classification of the“caching objects”,which can be further classified into content cache,data cache,and service ***,we discuss several open issues and challenges of edge caching to inspire future investigations in this research area.
Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate ...
详细信息
Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate detection capability,but their detection computational efficiency is *** recent years,with the increasing application of deep learning in ocean feature detection,many deep learning-based eddy detection models have been developed for more effective eddy detection from ocean *** it is difficult for them to precisely fit some physical features implicit in traditional methods,leading to inaccurate identification of ocean *** this study,to address the low efficiency of traditional physical methods and the low detection accuracy of deep learning models,we propose a solution that combines the target detection model Faster Region with CNN feature(Faster R-CNN)with the traditional dynamic algorithm Angular Momentum Eddy Detection and Tracking Algorithm(AMEDA).We use Faster R-CNN to detect and generate bounding boxes for eddies,allowing AMEDA to detect the eddy center within these bounding boxes,thus reducing the complexity of center *** demonstrate the detection efficiency and accuracy of this model,this paper compares the experimental results with AMEDA and the deep learning-based eddy detection method *** results show that the eddy detection results of this paper are more accurate than eddyNet and have higher execution efficiency than AMEDA.
The previous adversarial training models failed to pay attention to the influence of the changing gradient of the loss function in the current training on the model. The perturbation injected into the model is only pr...
详细信息
The extraction of atomic-level material features from electron microscope images is crucial for studying structure-property relationships and discovering new materials. However, traditional electron microscope analyse...
详细信息
The extraction of atomic-level material features from electron microscope images is crucial for studying structure-property relationships and discovering new materials. However, traditional electron microscope analyses rely on time-consuming and complex human operations; thus, they are only applicable to images with a small number of atoms. In addition, the analysis results vary due to observers' individual deviations. Although efforts to introduce automated methods have been performed previously, many of these methods lack sufficient labeled data or require various conditions in the detection process that can only be applied to the target material. Thus, in this study, we developed AtomGAN, which is a robust, unsupervised learning method, that segments defects in classical 2D material systems and the heterostructures of MoS2/WS2automatically. To solve the data scarcity problem, the proposed model is trained on unpaired simulated data that contain point and line defects for MoS2/WS2. The proposed AtomGAN was evaluated on both simulated and real electron microscope images. The results demonstrate that the segmented point defects and line defects are presented perfectly in the resulting figures, with a measurement precision of 96.9%. In addition, the cycled structure of AtomGAN can quickly generate a large number of simulated electron microscope images.
Iris biometrics allow contactless authentication, which makes it widely deployed human recognition mechanisms since the couple of years. Susceptibility of iris identification systems remains a challenging task due to ...
详细信息
Rapid urbanization has made road construction and maintenance imperative, but detecting road diseases has been time-consuming with limited accuracy. To overcome these challenges, we propose an efficient YOLOv7 road di...
详细信息
暂无评论