As an emerging privacy-preservation machine learning framework,Federated Learning(FL)facilitates different clients to train a shared model collaboratively through exchanging and aggregating model parameters while raw ...
详细信息
As an emerging privacy-preservation machine learning framework,Federated Learning(FL)facilitates different clients to train a shared model collaboratively through exchanging and aggregating model parameters while raw data are kept local and *** this learning framework is applied to Deep Reinforcement Learning(DRL),the resultant Federated Reinforcement Learning(FRL)can circumvent the heavy data sampling required in conventional DRL and benefit from diversified training data,besides privacy preservation offered by *** FRL implementations presuppose that clients have compatible tasks which a single global model can *** practice,however,clients usually have incompatible(different but still similar)personalized tasks,which we called task *** may severely hinder the implementation of FRL for practical *** this paper,we propose a Federated Meta Reinforcement Learning(FMRL)framework by integrating Model-Agnostic Meta-Learning(MAML)and ***,we innovatively utilize Proximal Policy Optimization(PPO)to fulfil multi-step local training with a single round of ***,considering the sensitivity of learning rate selection in FRL,we reconstruct the aggregation optimizer with the Federated version of Adam(Fed-Adam)on the server *** experiments demonstrate that,in different environments,FMRL outperforms other FL methods with high training efficiency brought by Fed-Adam.
With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance *** technology plays a critical role in enhancing publ...
详细信息
With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance *** technology plays a critical role in enhancing public ***,traditional methods typically process images and text separately,applying upstream models directly to downstream *** approach significantly increases the complexity ofmodel training and computational ***,the common class imbalance in existing training datasets limitsmodel performance *** address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training *** enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific ***,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)*** KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic *** module handles samples,effectively improving the model’s ability to distinguish fine-grained *** experimental outcomes across diverse datasets underscore the remarkable performance of *** results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks.
A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can ...
详细信息
A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number *** the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection *** terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background *** addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production *** experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line *** Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search spa...
详细信息
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various *** rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture *** this in mind,we propose a faster and more efficient differentiable architecture search method,***,we introduce a more efficient search space enriched by the introduction of two redefined convolution ***,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient ***,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search ***,group convolution and data augmentation are employed to reduce the computational ***,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach.
Zero-shot learning enables the recognition of new class samples by migrating models learned from semanticfeatures and existing sample features to things that have never been seen before. The problems of consistencyof ...
详细信息
Zero-shot learning enables the recognition of new class samples by migrating models learned from semanticfeatures and existing sample features to things that have never been seen before. The problems of consistencyof different types of features and domain shift problems are two of the critical issues in zero-shot learning. Toaddress both of these issues, this paper proposes a new modeling structure. The traditional approach mappedsemantic features and visual features into the same feature space;based on this, a dual discriminator approachis used in the proposed model. This dual discriminator approach can further enhance the consistency betweensemantic and visual features. At the same time, this approach can also align unseen class semantic features andtraining set samples, providing a portion of information about the unseen classes. In addition, a new feature fusionmethod is proposed in the model. This method is equivalent to adding perturbation to the seen class features,which can reduce the degree to which the classification results in the model are biased towards the seen *** the same time, this feature fusion method can provide part of the information of the unseen classes, improvingits classification accuracy in generalized zero-shot learning and reducing domain bias. The proposed method isvalidated and compared with othermethods on four datasets, and fromthe experimental results, it can be seen thatthe method proposed in this paper achieves promising results.
This paper investigates the input-to-state stabilization of discrete-time Markov jump systems. A quantized control scheme that includes coding and decoding procedures is proposed. The relationship between the error in...
详细信息
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in **...
详细信息
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in *** studies have applied cryptography tools to solve this problem by distributing trust,but they ignore the existence of *** this paper,a blockchain-based Privacy-Preserving and Collusion-Resistant scheme(PPCR)for double auctions is proposed by employing both cryptography and blockchain technology,which is the first decentralized and collusion-resistant double auction scheme that guarantees bidder anonymity and bid privacy.A two-server-based auction framework is designed to support off-chain allocation with privacy preservation and on-chain dispute resolution for collusion resistance.A Dispute Resolution agreement(DR)is provided to the auctioneer to prove that they have conducted the auction correctly and the result is fair and *** addition,a Concise Dispute Resolution protocol(CDR)is designed to handle situations where the number of accused winners is small,significantly reducing the computation cost of dispute *** experimental results confirm that PPCR can indeed achieve efficient collusion resistance and verifiability of auction results with low on-chain and off-chain computational overhead.
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and th...
详细信息
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and the influence of parameter adjustments on the dynamic performance of the system is proposed. This is a useful supplement to the theoretical control models of optimizers. First, the system control model is derived based on the iterative formula of the optimizer, the optimizer model is expressed by differential equations, and the control equation of the optimizer is established. Second, based on the system control model of the optimizer, the phase trajectory process of the optimizer model and the influence of different hyperparameters on the system performance of the learning model are analyzed. Finally, controllers with different optimizers and different hyperparameters are used to classify the MNIST and CIFAR-10 datasets to verify the effects of different optimizers on the model learning performance and compare them with related methods. Experimental results show that selecting appropriate optimizers can accelerate the convergence speed of the model and improve the accuracy of model recognition. Furthermore, the convergence speed and performance of the stochastic gradient descent(SGD) optimizer are better than those of the stochastic gradient descent-momentum(SGD-M) and Nesterov accelerated gradient(NAG) optimizers.
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approache...
详细信息
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image ***,the multistage generation strategy results in complex T2I ***,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation *** results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
暂无评论