Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
To address the challenges of detecting small traffic signs, low detection accuracy, complex detection network models, and large parameter counts, this paper proposes a lightweight traffic sign detection framework call...
详细信息
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and th...
详细信息
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and the influence of parameter adjustments on the dynamic performance of the system is proposed. This is a useful supplement to the theoretical control models of optimizers. First, the system control model is derived based on the iterative formula of the optimizer, the optimizer model is expressed by differential equations, and the control equation of the optimizer is established. Second, based on the system control model of the optimizer, the phase trajectory process of the optimizer model and the influence of different hyperparameters on the system performance of the learning model are analyzed. Finally, controllers with different optimizers and different hyperparameters are used to classify the MNIST and CIFAR-10 datasets to verify the effects of different optimizers on the model learning performance and compare them with related methods. Experimental results show that selecting appropriate optimizers can accelerate the convergence speed of the model and improve the accuracy of model recognition. Furthermore, the convergence speed and performance of the stochastic gradient descent(SGD) optimizer are better than those of the stochastic gradient descent-momentum(SGD-M) and Nesterov accelerated gradient(NAG) optimizers.
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consistin...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consisting of multiple,simple metarelations must be driven by domain *** sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this ***,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given ***,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node ***,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link ***,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the *** experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired c...
详细信息
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired candidates in point-to-point ***,such patterns could yield a high number of false-positive co-peaks,resulting in over-segmentation whenever there are mutual *** tackle with this issue,this paper proposes an instance co-segmentation method via tensor-based salient co-peak search(TSCPS-ICS).The proposed method explores high-order correlations via triple-to-triple matching among feature maps to find reliable co-peaks with the help of co-saliency *** proposed method is shown to capture more accurate intra-peaks and inter-peaks among feature maps,reducing the false-positive rate of co-peak *** having accurate co-peaks,one can efficiently infer responses of the targeted *** on four benchmark datasets validate the superior performance of the proposed method.
In the past decade, thanks to the powerfulness of deep-learning techniques, we have witnessed a whole new era of automated code generation. To sort out developments, we have conducted a comprehensive review of solutio...
详细信息
In the past decade, thanks to the powerfulness of deep-learning techniques, we have witnessed a whole new era of automated code generation. To sort out developments, we have conducted a comprehensive review of solutions to deep learning-based code generation. In this survey, we generally formalize the pipeline and procedure of code generation and categorize existing solutions according to taxonomy from perspectives of architecture, model-agnostic enhancing strategy, metrics, and tasks. In addition, we outline the challenges faced by current dominant large models and list several plausible directions for future research. We hope that this survey may provide handy guidance to understanding, utilizing, and developing deep learning-based code-generation techniques for researchers and practitioners.
Visual Question Answering(VQA)is a complex task that requires a deep understanding of both visual content and natural language *** challenge lies in enabling models to recognize and interpret visual elements and to re...
详细信息
Visual Question Answering(VQA)is a complex task that requires a deep understanding of both visual content and natural language *** challenge lies in enabling models to recognize and interpret visual elements and to reason through questions in a multi-step,compositional *** propose a novel Transformer-based model that introduces specialized tokenization techniques to effectively capture intricate relationships between visual and textual *** model employs an enhanced self-attention mechanism,enabling it to attend to multiple modalities simultaneously,while a co-attention unit dynamically guides focus to the most relevant image regions and question ***,a multi-step reasoning module supports iterative inference,allowing the model to excel at complex reasoning *** experiments on benchmark datasets demonstrate the model’s superior performance,with accuracies of 98.6%on CLEVR,63.78%on GQA,and 68.67%on VQA *** studies confirm the critical contribution of key components,such as the reasoning module and co-attention mechanism,to the model’s *** analysis of the learned attention distributions further illustrates the model’s dynamic reasoning process,adapting to task ***,our study advances the adaptation of Transformer architectures for VQA,enhancing both reasoning capabilities and model interpretability in visual reasoning tasks.
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection b...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection between cyberspace and physical processes results in the exposure of industrial production information to unprecedented security risks. It is imperative to develop suitable strategies to ensure cyber security while meeting basic performance *** the perspective of control engineering, this review presents the most up-to-date results for privacy-preserving filtering,control, and optimization in industrial cyber-physical systems. Fashionable privacy-preserving strategies and mainstream evaluation metrics are first presented in a systematic manner for performance evaluation and engineering *** discussion discloses the impact of typical filtering algorithms on filtering performance, specifically for privacy-preserving Kalman filtering. Then, the latest development of industrial control is systematically investigated from consensus control of multi-agent systems, platoon control of autonomous vehicles as well as hierarchical control of power systems. The focus thereafter is on the latest privacy-preserving optimization algorithms in the framework of consensus and their applications in distributed economic dispatch issues and energy management of networked power systems. In the end, several topics for potential future research are highlighted.
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their trans...
详细信息
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant *** challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy *** works often conflated safety issues with security *** contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of *** on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in ***,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
暂无评论