The accurate identification of smart meter(SM)fault types is crucial for enhancing the efficiency of operationand maintenance(O&M)and the reliability of power ***,the intelligent classification of SM fault typesfa...
详细信息
The accurate identification of smart meter(SM)fault types is crucial for enhancing the efficiency of operationand maintenance(O&M)and the reliability of power ***,the intelligent classification of SM fault typesfaces significant challenges owing to the complexity of featuresand the imbalance between fault *** address these issues,this study presents a fault diagnosis method for SM incorporatingthree distinct *** first module employs acombination of standardization,data imputation,and featureextraction to enhance the data quality,thereby facilitating improvedtraining and learning by the *** enhance theclassification performance,the data imputation method considersfeature correlation measurement and sequential imputation,and the feature extractor utilizes the discriminative enhancedsparse *** tackle the interclass imbalance of datawith discrete and continuous features,the second module introducesan assisted classifier generative adversarial network,which includes a discrete feature generation ***,anovel Stacking ensemble classifier for SM fault diagnosis is *** contrast to previous studies,we construct a two-layerheuristic optimization framework to address the synchronousdynamic optimization problem of the combinations and hyperparametersof the Stacking ensemble classifier,enabling betterhandling of complex classification tasks using SM *** proposedfault diagnosis method for SM via two-layer stacking ensembleoptimization and data augmentation is trained and validatedusing SM fault data collected from 2010 to 2018 in Zhejiang Province,*** results demonstrate the effectivenessof the proposed method in improving the accuracyof SM fault diagnosis,particularly for minority classes.
With the ever-rising risk of phishing attacks, which capitalize on vulnerable human behavior in the contemporary digital space, requires new cybersecurity methods. This literary work contributes to the solution by nov...
详细信息
Emerging technologies of Agriculture 4.0 such as the Internet of Things (IoT), Cloud Computing, Artificial Intelligence (AI), and 5G network services are being rapidly deployed to address smart farming implementation-...
详细信息
Face anti-spoofing aims at detecting whether the input is a real photo of a user(living)or a fake(spoofing)*** new types of attacks keep emerging,the detection of unknown attacks,known as Zero-Shot Face Anti-Spoofing(...
详细信息
Face anti-spoofing aims at detecting whether the input is a real photo of a user(living)or a fake(spoofing)*** new types of attacks keep emerging,the detection of unknown attacks,known as Zero-Shot Face Anti-Spoofing(ZSFA),has become increasingly important in both academia and *** ZSFA methods mainly focus on extracting discriminative features between spoofing and living ***,the nature of the spoofing faces is to trick anti-spoofing systems by mimicking the livings,therefore the deceptive features between the known attacks and the livings,which have been ignored by existing ZSFA methods,are essential to comprehensively represent the ***,existing ZSFA models are incapable of learning the complete representations of living faces and thus fall short of effectively detecting newly emerged *** tackle this problem,we propose an innovative method that effectively captures both the deceptive and discriminative features distinguishing between genuine and spoofing *** method consists of two main components:a two-against-all training strategy and a semantic *** two-against-all training strategy is employed to separate deceptive and discriminative *** address the subsequent invalidation issue of categorical functions and the dominance disequilibrium issue among different dimensions of features after importing deceptive features,we introduce a modified semantic *** autoencoder is designed to map all extracted features to a semantic space,thereby achieving a balance in the dominance of each feature *** combine our method with the feature extraction model ResNet50,and experimental results show that the trained ResNet50 model simultaneously achieves a feasible detection of unknown attacks and comparably accurate detection of known *** results confirm the superiority and effectiveness of our proposed method in identifying the living with the interference of both known
Network traffic anomaly detection plays a crucial role in today's network security and performance management. In response to the challenges in current network traffic data processing, such as insufficient structu...
详细信息
Stroke is a kind of acute cerebrovascular disease, which is caused by the sudden rupture of blood vessels in the brain or the blockage of blood vessels that can not flow into the brain and cause brain tissue damage. S...
详细信息
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from l...
详细信息
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from large plants to consumers, faced challenges in efficiency, reliability, and scalability. Over time, the grid has transformed into a decentralized network driven by innovative technologies, particularly artificial intelligence (AI). AI has become instrumental in enhancing efficiency, security, and resilience by enabling real-time data analysis, predictive maintenance, demand-response optimization, and automated fault detection, thereby improving overall operational efficiency. This paper examines the evolution of the electrical grid, tracing its transition from early limitations to the methodologies adopted in present smart grids for addressing those challenges. Current smart grids leverage AI to optimize energy management, predict faults, and seamlessly integrate electric vehicles (EVs), reducing transmission losses and improving performance. However, these advancements are not without limitations. Present grids remain vulnerable to cyberattacks, necessitating the adoption of more robust methodologies and advanced technologies for future grids. Looking forward, emerging technologies such as Digital Twin (DT) models, the Internet of Energy (IoE), and decentralized grid management are set to redefine grid architectures. These advanced technologies enable real-time simulations, adaptive control, and enhanced human–machine collaboration, supporting dynamic energy distribution and proactive risk management. Integrating AI with advanced energy storage, renewable resources, and adaptive access control mechanisms will ensure future grids are resilient, sustainable, and responsive to growing energy demands. This study emphasizes AI’s transformative role in addressing the challenges of the early grid, enhancing the capabilities of the present smart grid, and shaping a secure
Federated Learning (FL) is a distributed privacy-protecting machine learning paradigm that enables collaborative training among multiple parties without the need to share raw data. This mode of training renders FL par...
详细信息
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lac...
详细信息
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19 style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task. Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the gap between NMT outputs and the formality required in various real-world translation scenarios.
In the education sector, an increasing amount of research is beginning to explore the application of blockchain technology to credit banks. This paper proposes a consortium blockchain consensus mechanism tailored for ...
详细信息
暂无评论