Sound event detection and classification present significant challenges, particularly in noisy environments with multiple overlapping sources. This paper introduces an innovative architecture for multiple sound event ...
详细信息
Hyperspectral anomaly detection (HAD) identifies anomalies by analyzing differences between anomalies and background pixels without prior information, presenting a significant challenge. Most existing studies leverage...
详细信息
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution ***,current copy-paste methods have three limitations:(1)training the m...
详细信息
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution ***,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than *** design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these *** be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled *** introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in *** the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local *** this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation *** two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation *** only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.
Training Generative Adversarial Networks (GANs) with few-shot data has been a challenging task, which is prevalently solved by adapting a deep generative model pre-trained on the large-scale data in a source domain to...
详细信息
In understanding brain functioning by Electroencephalography (EEG), it is essential to be able to not only identify more active brain areas but also understand connectivity among different areas. The functional and ef...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactiv...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication(S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's(BS's) non-line-of-sight(NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication(ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
Topology is usually perceived intrinsically immutable for a given *** argue that optical topologies do not immediately enjoy such ***'optical skyrmions'as an example,we show that they will exhibit varying text...
详细信息
Topology is usually perceived intrinsically immutable for a given *** argue that optical topologies do not immediately enjoy such ***'optical skyrmions'as an example,we show that they will exhibit varying textures and topological invariants(skyrmion numbers),depending on how to construct the skyrmion vector when projecting from real to parameter *** demonstrate the fragility of optical skyrmions under a ubiquitous scenario-simple reflection off an optical *** topology is not without benefit,but it must not be assumed.
As one of the most representative recommendation solutions, traditional collaborative filtering (CF) models typically have limitations in dealing with large-scale, sparse data to capture complex relationships between ...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
The advent of Federated Learning (FL) empowers IoT devices to collectively train a shared model without local data exposure. In order to address the issue of Non-IID that causes model performance degradation, the rece...
详细信息
暂无评论