Nanocatalytic therapy shows great potential for therapeutic ***,therapeutic efficiency is often limited by unsatisfactory enzyme activity and lack of the coordination of immune ***,engineering nanozymes activity enhan...
详细信息
Nanocatalytic therapy shows great potential for therapeutic ***,therapeutic efficiency is often limited by unsatisfactory enzyme activity and lack of the coordination of immune ***,engineering nanozymes activity enhancement while activating immune system will be an effective strategy to achieve efficient tumor ***,we synthesize a DSPE-PEG-FA modified manganese dioxide-based dual-atom nanozyme(MDF),on which iridium and platinum atoms are *** obtained MDF can simultaneously mimic four enzyme activities of catalase,oxidase,peroxidase,and glutathione oxidase,set off a reactive oxygen species(ROS)storm,cause tumor cell *** enzyme activity of MDF can be enhanced by its own photothermal ***,MDF can consume intracellular glutathione and release Mn^(2+),which can prevent generated ROS from consumption and further activate cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes(cGAS-STING)pathway and promote the secretion of type I interferon,which will help promote dendritic cells maturation,present antigens to T lymphocytes to help kill tumor ***,MDF shows excellent tumor suppressive *** work provides a new paradigm for the field of nanozymes and offers a new reference for involvement of cGAS-STING pathway activation in tumor catalytic therapy.
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).I...
详细信息
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure *** paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure *** constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse *** the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are *** is evaluated,and the data results demonstrate that SCD achieves the above objectives.
Complex networks are becoming more complex because of the use of many components with diverse technologies. In fact, manual configuration that makes each component interoperable has breed latent danger to system secur...
详细信息
Complex networks are becoming more complex because of the use of many components with diverse technologies. In fact, manual configuration that makes each component interoperable has breed latent danger to system security. There is still no comprehensive review of these studies and prospects for further research. According to the complexity of component configuration and difficulty of security assurance in typical complex networks, this paper systematically reviews the abstract models and formal analysis methods required for intelligent configuration of complex networks, specifically analyzes, and compares the current key technologies such as configuration semantic awareness, automatic generation of security configuration, dynamic deployment, and verification evaluation. These technologies can effectively improve the security of complex networks intelligent configuration and reduce the complexity of operation and maintenance. This paper also summarizes the mainstream construction methods of complex networks configuration and its security test environment and detection index system, which lays a theoretical foundation for the formation of the comprehensive effectiveness verification capability of configuration security. The whole lifecycle management system of configuration security process proposed in this paper provides an important technical reference for reducing the complexity of network operation and maintenance and improving network security.
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
Increasing attention has been directed toward obtaining fine-grained sentiment analysis in natural language tasks, with quadruple extraction emerging as a key focal point. In the Aspect Sentiment Quad Prediction(ASQP)...
详细信息
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from l...
详细信息
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from large plants to consumers, faced challenges in efficiency, reliability, and scalability. Over time, the grid has transformed into a decentralized network driven by innovative technologies, particularly artificial intelligence (AI). AI has become instrumental in enhancing efficiency, security, and resilience by enabling real-time data analysis, predictive maintenance, demand-response optimization, and automated fault detection, thereby improving overall operational efficiency. This paper examines the evolution of the electrical grid, tracing its transition from early limitations to the methodologies adopted in present smart grids for addressing those challenges. Current smart grids leverage AI to optimize energy management, predict faults, and seamlessly integrate electric vehicles (EVs), reducing transmission losses and improving performance. However, these advancements are not without limitations. Present grids remain vulnerable to cyberattacks, necessitating the adoption of more robust methodologies and advanced technologies for future grids. Looking forward, emerging technologies such as Digital Twin (DT) models, the Internet of Energy (IoE), and decentralized grid management are set to redefine grid architectures. These advanced technologies enable real-time simulations, adaptive control, and enhanced human–machine collaboration, supporting dynamic energy distribution and proactive risk management. Integrating AI with advanced energy storage, renewable resources, and adaptive access control mechanisms will ensure future grids are resilient, sustainable, and responsive to growing energy demands. This study emphasizes AI’s transformative role in addressing the challenges of the early grid, enhancing the capabilities of the present smart grid, and shaping a secure
Video question answering(VideoQA) is a challenging yet important task that requires a joint understanding of low-level video content and high-level textual semantics. Despite the promising progress of existing efforts...
详细信息
Video question answering(VideoQA) is a challenging yet important task that requires a joint understanding of low-level video content and high-level textual semantics. Despite the promising progress of existing efforts, recent studies revealed that current VideoQA models mostly tend to over-rely on the superficial correlations rooted in the dataset bias while overlooking the key video content, thus leading to unreliable results. Effectively understanding and modeling the temporal and semantic characteristics of a given video for robust VideoQA is crucial but, to our knowledge, has not been well investigated. To fill the research gap, we propose a robust VideoQA framework that can effectively model the cross-modality fusion and enforce the model to focus on the temporal and global content of videos when making a QA decision instead of exploiting the shortcuts in datasets. Specifically, we design a self-supervised contrastive learning objective to contrast the positive and negative pairs of multimodal input, where the fused representation of the original multimodal input is enforced to be closer to that of the intervened input based on video perturbation. We expect the fused representation to focus more on the global context of videos rather than some static keyframes. Moreover, we introduce an effective temporal order regularization to enforce the inherent sequential structure of videos for video representation. We also design a Kullback-Leibler divergence-based perturbation invariance regularization of the predicted answer distribution to improve the robustness of the model against temporal content perturbation of videos. Our method is model-agnostic and can be easily compatible with various VideoQA backbones. Extensive experimental results and analyses on several public datasets show the advantage of our method over the state-of-the-art methods in terms of both accuracy and robustness.
U nsupervised contrastive learning to obtain sentence embedding has become a widely adopted and effective method. However, existing techniques mainly focus on the construction of positive-negative sample pairs, where ...
详细信息
Blockchain technology has been extensively studied over the past decade as a foundation for decentralized information-sharing platforms due to its promising *** the success of existing blockchain architectures like Bi...
详细信息
Blockchain technology has been extensively studied over the past decade as a foundation for decentralized information-sharing platforms due to its promising *** the success of existing blockchain architectures like Bitcoin,Ethereum,Filecoin,Hyperledger Fabric,BCOS,and BCS,current blockchain applications are still quite *** struggles with scenarios requiring high-speed transactions(e.g.,online markets)or large data storage(e.g.,video services)due to consensus efficiency *** restrictions pose risks to investors in blockchain-based economic systems(e.g.,DeFi),deterring current and potential *** protection challenges make it difficult to involve sensitive data in blockchain applications.
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essenti...
详细信息
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing *** task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog *** process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource *** this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local *** balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization *** FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response *** relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
暂无评论