The rapid development of Internet of things(Io T) and edge computing technologies has brought forth numerous possibilities for the intelligent and digital future. The frequent communication and interaction between dev...
详细信息
The rapid development of Internet of things(Io T) and edge computing technologies has brought forth numerous possibilities for the intelligent and digital future. The frequent communication and interaction between devices inevitably generate a large amount of sensitive information. Deploying a blockchain network to store sensitive data is crucial for ensuring privacy and security. The openness and synchronicity of blockchain networks give rise to challenges such as transaction privacy and storage capacity issues, significantly impeding their development in the context of edge computing and Io T. This paper proposes a reliable fog computing service solution based on a blockchain fog architecture. This paper stores data files in the inter planetary file system(IPFS) and encrypts the file hash values used for retrieving data files with stream cipher encryption. It employs a steganographic transmission technique leveraging Alpha Zero's Gomoku algorithm to discretely transmit the stream cipher key across the blockchain network without a carrier, thus achieving dual encryption. This approach aims to mitigate the storage burden on the blockchain network while ensuring the security of transaction data. Experimental results demonstrate that the model enhances the transmission capacity of confidential information from kilobytes(KB) to megabytes(MB) and exhibits high levels of covert and security features.
Estimating lighting from standard images can effectively circumvent the need for resourceintensive high-dynamic-range(HDR)lighting ***,this task is often ill-posed and challenging,particularly for indoor scenes,due to...
详细信息
Estimating lighting from standard images can effectively circumvent the need for resourceintensive high-dynamic-range(HDR)lighting ***,this task is often ill-posed and challenging,particularly for indoor scenes,due to the intricacy and ambiguity inherent in various indoor illumination *** propose an innovative transformer-based method called SGformer for lighting estimation through modeling spherical Gaussian(SG)distributions—a compact yet expressive lighting *** from previous approaches,we explore underlying local and global dependencies in lighting features,which are crucial for reliable lighting ***,we investigate the structural relationships spanning various resolutions of SG distributions,ranging from sparse to dense,aiming to enhance structural consistency and curtail potential stochastic noise stemming from independent SG component *** harnessing the synergy of local–global lighting representation learning and incorporating consistency constraints from various SG resolutions,the proposed method yields more accurate lighting estimates,allowing for more realistic lighting effects in object relighting and *** code and model implementing our work can be found at https://***/junhong-jennifer-zhao/SGformer.
The Internet of Things (IoT) brings countless real-world items together, producing a great deal of data. The IoT efficiently retrieves information from diverse data sources to achieve intelligent applications. In this...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the generated counterfeit facial images have become increasingly challenging to distinguish. There is an urgent need for a more robust and convincing detection method. Current detection methods mainly operate in the spatial domain and transform the spatial domain into other domains for analysis. With the emergence of transformers, some researchers have also combined traditional convolutional networks with transformers for detection. This paper explores the artifacts left by Deepfakes in various domains and, based on this exploration, proposes a detection method that utilizes the steganalysis rich model to extract high-frequency noise to complement spatial features. We have designed two main modules to fully leverage the interaction between these two aspects based on traditional convolutional neural networks. The first is the multi-scale mixed feature attention module, which introduces artifacts from high-frequency noise into spatial textures, thereby enhancing the model's learning of spatial texture features. The second is the multi-scale channel attention module, which reduces the impact of background noise by weighting the features. Our proposed method was experimentally evaluated on mainstream datasets, and a significant amount of experimental results demonstrate the effectiveness of our approach in detecting Deepfake forged faces, outperforming the majority of existing methods.
The drug traceability model is used for ensuring drug quality and its safety for customers in the medical supply chain. The healthcare supply chain is a complex network, which is susceptible to failures and leakage of...
详细信息
The accurate identification of students in need is crucial for governments and colleges to allocate resources more effectively and enhance social equity and educational fairness. Existing approaches to identifying stu...
详细信息
In computing-oriented communication scenarios, over-the-air computation (AirComp) directly computes results by leveraging the waveform superposition of wireless multiple access channels (MAC), eliminating the need to ...
详细信息
Pretrained language models (PLMs) have shown remarkable performance on question answering (QA) tasks, but they usually require fine-tuning (FT) that depends on a substantial quantity of QA pairs. Therefore, improving ...
详细信息
While deep learning techniques have shown promising performance in the Major Depressive Disorder (MDD) detection task, they still face limitations in real-world scenarios. Specifically, given the data scarcity, some e...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
暂无评论