Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle wi...
详细信息
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation *** methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall *** address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh *** FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh *** Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline ***,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
Precise polyp segmentation is vital for the early diagnosis and prevention of colorectal cancer(CRC)in clinical ***,due to scale variation and blurry polyp boundaries,it is still a challenging task to achieve satisfac...
详细信息
Precise polyp segmentation is vital for the early diagnosis and prevention of colorectal cancer(CRC)in clinical ***,due to scale variation and blurry polyp boundaries,it is still a challenging task to achieve satisfactory segmentation performance with different scales and *** this study,we present a novel edge-aware feature aggregation network(EFA-Net)for polyp segmentation,which can fully make use of cross-level and multi-scale features to enhance the performance of polyp ***,we first present an edge-aware guidance module(EGM)to combine the low-level features with the high-level features to learn an edge-enhanced feature,which is incorporated into each decoder unit using a layer-by-layer ***,a scale-aware convolution module(SCM)is proposed to learn scale-aware features by using dilated convolutions with different ratios,in order to effectively deal with scale ***,a cross-level fusion module(CFM)is proposed to effectively integrate the cross-level features,which can exploit the local and global contextual ***,the outputs of CFMs are adaptively weighted by using the learned edge-aware feature,which are then used to produce multiple side-out segmentation *** results on five widely adopted colonoscopy datasets show that our EFA-Net outperforms state-of-the-art polyp segmentation methods in terms of generalization and *** implementation code and segmentation maps will be publicly at https://***/taozh2017/EFANet.
The inverse kinematics problem in serially manipulated upper limb rehabilitation robots implies the usage of the end-effector position to obtain the joint rotation angles. In contrast to the forward kinematics, there ...
详细信息
This research focuses on improving the Harris’Hawks Optimization algorithm(HHO)by tackling several of its shortcomings,including insufficient population diversity,an imbalance in exploration ***,and a lack of thoroug...
详细信息
This research focuses on improving the Harris’Hawks Optimization algorithm(HHO)by tackling several of its shortcomings,including insufficient population diversity,an imbalance in exploration ***,and a lack of thorough exploitation *** tackle these shortcomings,it proposes enhancements from three distinct perspectives:an initialization technique for populations grounded in opposition-based learning,a strategy for updating escape energy factors to improve the equilibrium between exploitation and exploration,and a comprehensive exploitation approach that utilizes variable neighborhood search along with mutation *** effectiveness of the Improved Harris Hawks Optimization algorithm(IHHO)is assessed by comparing it to five leading algorithms across 23 benchmark test *** findings indicate that the IHHO surpasses several contemporary algorithms its problem-solving ***,this paper introduces a feature selection method leveraging the IHHO algorithm(IHHO-FS)to address challenges such as low efficiency in feature selection and high computational costs(time to find the optimal feature combination and model response time)associated with high-dimensional *** analyses between IHHO-FS and six other advanced feature selection methods are conducted across eight *** results demonstrate that IHHO-FS significantly reduces the computational costs associated with classification models by lowering data dimensionality,while also enhancing the efficiency of feature ***,IHHO-FS shows strong competitiveness relative to numerous algorithms.
In this paper, we propose hardware acceleration to improve a performance of scripting programming languages for embedded developments. Scripting programming languages enable more efficient software developments and sc...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to i...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber ***, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
Motion retargeting is an active research area in computer graphics and animation, allowing for the transfer of motion from one character to another, thereby creating diverse animated character data. While this technol...
详细信息
Motion retargeting is an active research area in computer graphics and animation, allowing for the transfer of motion from one character to another, thereby creating diverse animated character data. While this technology has numerous applications in animation, games, and movies, current methods often produce unnatural or semantically inconsistent motion when applied to characters with different shapes or joint counts. This is primarily due to a lack of consideration for the geometric and spatial relationships between the body parts of the source and target characters. To tackle this challenge, we introduce a novel spatially-preserving Skinned Motion Retargeting Network (SMRNet) capable of handling motion retargeting for characters with varying shapes and skeletal structures while maintaining semantic consistency. By learning a hybrid representation of the character's skeleton and shape in a rest pose, SMRNet transfers the rotation and root joint position of the source character's motion to the target character through embedded rest pose feature alignment. Additionally, it incorporates a differentiable loss function to further preserve the spatial consistency of body parts between the source and target. Comprehensive quantitative and qualitative evaluations demonstrate the superiority of our approach over existing alternatives, particularly in preserving spatial relationships more effectively IEEE
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi...
详细信息
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of *** technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the *** the traditional blockchain,data is stored in a Merkle *** data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based ***,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of *** solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC ***,this paper uses PVC instead of the Merkle tree to store big data generated by *** can improve the efficiency of traditional VC in the process of commitment and ***,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of *** mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT.
Magnesium chips were coated with a high concentration of graphite using a binder and were used as the raw material for injection molding. The microstructure of the magnesium injection-molded product with added graphit...
详细信息
Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past *** of the most tedious tasks is to track a suspect once a crime is *** most ...
详细信息
Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past *** of the most tedious tasks is to track a suspect once a crime is *** most of the crimes are committed by individuals who have a history of felonies,it is essential for a monitoring system that does not just detect the person’s face who has committed the crime,but also their ***,a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network(DNN)model which employs a Single Shot Multibox Detector for detection of face and an auto-encoder model in which the encoder part is used for matching the captured facial images with the criminals has been *** detection and extraction of the face in the image by face cropping,the captured face is then compared with the images in the *** comparison is performed by calculating the similarity value between each pair of images that are obtained by using the Cosine Similarity *** plotting the values in a graph to find the threshold value,we conclude that the confidence rate of the encoder model is 0.75 and above.
暂无评论