Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research *** physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural netw...
详细信息
Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research *** physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural networks,demonstrate proficiency in modeling ideal physical systems,but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws *** this paper,we present a novel augmented deep Lagrangian network,which seamlessly integrates a deep Lagrangian network with a standard deep *** fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian *** proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under *** experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.
In recent years, great success has been achieved in many tasks of natural language processing (NLP), e.g., named entity recognition (NER), especially in the high-resource language, i.e., English, thanks in part to the...
详细信息
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web ...
详细信息
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a *** emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of *** a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage ***,the question of how to determine the most suitable mashups from big data has become a challenging *** this paper,we propose a mashup recommendation framework from big data in mobile networks and the *** proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix *** employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the *** also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization *** then crawl through a real-world large mashup dataset and perform *** experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.
End-to-end training has emerged as a prominent trend in speech recognition, with Conformer models effectively integrating Transformer and CNN architectures. However, their complexity and high computational cost pose d...
详细信息
In practical abnormal traffic detection scenarios,traffic often appears as drift,imbalanced and rare labeled streams,and how to effectively identify malicious traffic in such complex situations has become a challenge ...
详细信息
In practical abnormal traffic detection scenarios,traffic often appears as drift,imbalanced and rare labeled streams,and how to effectively identify malicious traffic in such complex situations has become a challenge for malicious traffic *** have extensive studies on malicious traffic detection with single challenge,but the detection of complex traffic has not been widely *** adaptive random forests(QARF) is proposed to detect traffic streams with concept drift,imbalance and lack of labeled *** is an online active learning based approach which combines adaptive random forests method and adaptive margin sampling *** achieves querying a small number of instances from unlabeled traffic streams to obtain effective *** conduct experiments using the NSL-KDD dataset to evaluate the performance of *** is compared with other state-of-the-art *** experimental results show that QARF obtains 98.20% accuracy on the NSL-KDD *** performs better than other state-of-the-art methods in comparisons.
This paper addresses the mixed H∞/L2−L∞ control problem for two-dimensional (2-D) Markov jump systems using a multiaccess stochastic communication protocol (MSCP). The actuators are randomly selected, allowing only ...
详细信息
Inspired by basic circuit connection methods,memristors can also be utilized in the construction of complex discrete chaotic *** investigate the dynamical effects of hybrid memristors,we propose two hybrid tri-memrist...
详细信息
Inspired by basic circuit connection methods,memristors can also be utilized in the construction of complex discrete chaotic *** investigate the dynamical effects of hybrid memristors,we propose two hybrid tri-memristor hyperchaotic(HTMH)mapping structures based on the hybrid parallel/cascade and cascade/parallel operations,*** the HTMH mapping structure with hybrid parallel/cascade operation as an example,this map possesses a spatial invariant set whose stability is closely related to the initial states of the *** distributions and bifurcation behaviours dependent on the control parameters are explored with numerical ***,the memristor initial offset-boosting mechanism is theoretically demonstrated,and memristor initial offset-boosting behaviours are numerically *** results clarify that the HTMH map can exhibit hyperchaotic behaviours and extreme multistability with homogeneous coexisting infinite *** addition,an FPGA hardware platform is fabricated to implement the HTMH map and generate pseudorandom numbers(PRNs)with high ***,the generated PRNs can be applied in Wasserstein generative adversarial nets(WGANs)to enhance training stability and generation capability.
Learning a good similarity measure for large-scale high-dimensional data is a crucial task in machine learning applications, yet it poses a significant challenge. Distributed minibatch Stochastic Gradient Descent (SGD...
详细信息
Scene text detection is an important task in computer *** this paper,we present YOLOv5 Scene Text(YOLOv5ST),an optimized architecture based on YOLOv5 v6.0 tailored for fast scene text *** primary goal is to enhance in...
详细信息
Scene text detection is an important task in computer *** this paper,we present YOLOv5 Scene Text(YOLOv5ST),an optimized architecture based on YOLOv5 v6.0 tailored for fast scene text *** primary goal is to enhance inference speed without sacrificing significant detection accuracy,thereby enabling robust performance on resource-constrained devices like drones,closed-circuit television cameras,and other embedded *** achieve this,we propose key modifications to the network architecture to lighten the original backbone and improve feature aggregation,including replacing standard convolution with depth-wise convolution,adopting the C2 sequence module in place of C3,employing Spatial Pyramid Pooling Global(SPPG)instead of Spatial Pyramid Pooling Fast(SPPF)and integrating Bi-directional Feature Pyramid Network(BiFPN)into the *** results demonstrate a remarkable 26%improvement in inference speed compared to the baseline,with only marginal reductions of 1.6%and 4.2%in mean average precision(mAP)at the intersection over union(IoU)thresholds of 0.5 and 0.5:0.95,*** work represents a significant advancement in scene text detection,striking a balance between speed and accuracy,making it well-suited for performance-constrained environments.
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
暂无评论