MXenes obtained significant attention in the field of energy storage devices due to their characteristic layered structure,modifiable surface functional groups,large electrochemically active surface,and regulable inte...
详细信息
MXenes obtained significant attention in the field of energy storage devices due to their characteristic layered structure,modifiable surface functional groups,large electrochemically active surface,and regulable interlayer ***,the self-restacking and sluggish ions diffusion kinetics performance of MXenes during the alkali metal ions insertion/extraction process severely impedes their cycle stability and rate *** paper proposes an aniline molecule welding strategy for welding p-phenylenediamine(PPDA) into the interlayers of Ti2C through a dehydration condensation *** welded PPDA molecules can contribute pillar effect to the layered structure of *** pillar effect effectively maintains the structural stability during the sodium ions insertion/extraction process and effectively expands the interlayer spacing of Ti2C from 1.16 to 1.38 nm,thereby enhancing ions diffusion kinetics performance and improving the long-term cycle *** Ti2C-PPDA demonstrates outstanding Na+storage capability,exhibiting a specific capacity of 100.2 mAh·g-1at a current density of 0.1 A·g-1over 960 cycles and delivering a remarkable rate capability 81.2 mAh·g-1at a current density of 5 A·*** study demonstrates that expanding interlayer spacing is a promising strategy to enhance the Na+storage capacity and improve long-term cycling stability,which provides significant guidance for the design of two-dimensional Na+storage materials with high-rate capability and cycle stability.
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
The critical node problem(CNP)aims to deal with critical node identification in a graph,which has extensive applications in many *** CNP is a challenging task due to its computational complexity,and it attracts much a...
详细信息
The critical node problem(CNP)aims to deal with critical node identification in a graph,which has extensive applications in many *** CNP is a challenging task due to its computational complexity,and it attracts much attention from both academia and *** this paper,we propose a population-based heuristic search algorithm called CPHS(Cut Point Based Heuristic Search)to solve CNP,which integrates two main *** first one is a cut point based greedy strategy in the local search,and the second one involves the functions used to update the solution pool of the ***,a mutation strategy is applied to solutions with probability based on the overall average similarity to maintain the diversity of the solution *** are performed on a synthetic benchmark,a real-world benchmark,and a large-scale network benchmark to evaluate our *** with state-of-the-art algorithms,our algorithm has better performance in terms of both solution quality and run time on all the three benchmarks.
INTRODUCTION Store signboards provide important information in street view images,andcharacter recognition in natural scenes is an important research direction in computer *** view store signboard character recognitio...
INTRODUCTION Store signboards provide important information in street view images,andcharacter recognition in natural scenes is an important research direction in computer *** view store signboard character recognition technology,acombination of the two,
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and gener...
详细信息
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and generalization to real rain *** this paper,we propose a deep residual channel attention network(DeRCAN)for *** channel attention mechanism is able to capture the inherent properties of the feature space and thus facilitates more accurate estimations of structures and details for image *** addition,we further propose an unsupervised learning approach to better solve real rain images based on the proposed *** qualitative and quantitative evaluation results on both synthetic and real-world images demonstrate that the proposed DeRCAN performs favorably against state-of-the-art methods.
The integration of edge computing into satellite networks offers a promising solution for extending computational services to remote and underserved areas. To effectively provide a variety of computing services, it is...
详细信息
Disentangling facial expressions from other disturbing facial attributes in face images is an essential topic for facial expression *** methods only care about facial expression disentanglement(FED)itself,ignoring the...
详细信息
Disentangling facial expressions from other disturbing facial attributes in face images is an essential topic for facial expression *** methods only care about facial expression disentanglement(FED)itself,ignoring the negative effects of other facial *** to the annotations on limited facial attributes,it is difficult for existing FED solutions to disentangle all disturbance from the input *** solve this issue,we propose an expression complementary disentanglement network(ECDNet).ECDNet proposes to finish the FED task during a face reconstruction process,so as to address all facial attributes during *** from traditional reconstruction models,ECDNet reconstructs face images by progressively generating and combining facial appearance and matching *** designs the expression incentive(EIE) and expression inhibition(EIN) mechanisms,inducing the model to characterize the disentangled expression and complementary parts *** geometry and appearance,generated in the reconstructed process,are dealt with to represent facial expressions and complementary parts,*** combination of distinctive reconstruction model,EIE,and EIN mechanisms ensures the completeness and exactness of the FED *** results on RAF-DB,AffectNet,and CAER-S datasets have proven the effectiveness and superiority of ECDNet.
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic ***,due to the stringent requirements of the quantum key generation environment,the g...
详细信息
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic ***,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical *** this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet ***,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot ***,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key ***,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key *** results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.
The problem of imbalanced data classification learning has received much *** classification algorithms are susceptible to data skew to favor majority samples and ignore minority *** weighted minority oversampling tech...
详细信息
The problem of imbalanced data classification learning has received much *** classification algorithms are susceptible to data skew to favor majority samples and ignore minority *** weighted minority oversampling technique(MWMOTE)is an effective approach to solve this problem,however,it may suffer from the shortcomings of inadequate noise filtering and synthesizing the same samples as the original minority *** this end,we propose an improved MWMOTE method named joint sample position based noise filtering and mean shift clustering(SPMSC)to solve these ***,in order to effectively eliminate the effect of noisy samples,SPMsC uses a new noise filtering mechanism to determine whether a minority sample is noisy or not based on its position and distribution relative to the majority *** that MWMOTE may generate duplicate samples,we then employ the mean shift algorithm to cluster minority samples to reduce synthetic replicate ***,data cleaning is performed on the processed data to further eliminate class *** on extensive benchmark datasets demonstrate the effectiveness of SPMsC compared with other sampling methods.
The evolution of edge computing has advanced the accessibility of E-health recommendation services, encompassing areas such as medical consultations, prescription guidance, and diagnostic assessments. Traditional meth...
详细信息
The evolution of edge computing has advanced the accessibility of E-health recommendation services, encompassing areas such as medical consultations, prescription guidance, and diagnostic assessments. Traditional methodologies predominantly utilize centralized recommendations, relying on servers to store client data and dispatch advice to ***, these conventional approaches raise significant concerns regarding data privacy and often result in computational inefficiencies. E-health recommendation services, distinct from other recommendation domains, demand not only precise and swift analyses but also a stringent adherence to privacy safeguards, given the users' reluctance to disclose their identities or health information. In response to these challenges, we explore a new paradigm called on-device recommendation tailored to E-health diagnostics, where diagnostic support(such as biomedical image diagnostics), is computed at the client *** leverage the advances of federated learning to deploy deep learning models capable of delivering expert-level diagnostic suggestions on clients. However, existing federated learning frameworks often deploy a singular model across all edge devices, overlooking their heterogeneous computational capabilities. In this work, we propose an adaptive federated learning framework utilizing BlockNets, a modular design rooted in the layers of deep neural networks, for diagnostic recommendation across heterogeneous devices. Our framework offers the flexibility for users to adjust local model configurations according to their device's computational power. To further handle the capacity skewness of edge devices, we develop a data-free knowledge distillation mechanism to ensure synchronized parameters of local models with the global model, enhancing the overall accuracy. Through comprehensive experiments across five real-world datasets, against six baseline models, within six experimental setups, and various data distribution scenario
暂无评论