Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution ***,current copy-paste methods have three limitations:(1)training the m...
详细信息
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution ***,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than *** design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these *** be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled *** introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in *** the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local *** this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation *** two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation *** only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.
Cross-domain few-shot segmentation (CD-FSS) is proposed to first pre-train the model on a large-scale source-domain dataset, and then transfer the model to data-scarce target-domain datasets for pixel-level segmentati...
Deep networks are known to be vulnerable to adversarial examples which are deliberately designed to mislead the trained model by introducing imperceptible perturbations to input samples. Compared to traditional pertur...
Deepfake videos are rapidly spreading across the internet, posing significant threats to public interests. To counter this issue, researchers have developed various deep learning-based deepfake detection methods, whic...
详细信息
Automated blood cell classification is crucial for hematological analysis, yet the scarcity of annotated medical datasets challenges deep learning models. This study presents a novel semi-supervised Elastic Generative...
详细信息
Billions of people worldwide are affected by vision impairment majorly caused due to age-related degradation and refractive errors. Diabetic Retinopathy(DR) and Macular Hole(MH) are among the most prevalent senescent ...
详细信息
Feature selection is an essential pre-process component in data mining that aims to select the most relevant features from the target dataset. Datasets are always dynamic in real-world applications, and features may e...
详细信息
In order to overcome the limitations of traditional numerical methods in the numerical simulation of two-dimensional Rayleigh-Bénard heat convection, a novel approach based on physical information neural networks...
详细信息
Generative image steganography is a technique that directly generates stego images from secret *** traditional methods,it theoretically resists steganalysis because there is no cover ***,the existing generative image ...
详细信息
Generative image steganography is a technique that directly generates stego images from secret *** traditional methods,it theoretically resists steganalysis because there is no cover ***,the existing generative image steganography methods generally have good steganography performance,but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information ***,this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping ***,the reference image is disentangled by a content and an attribute encoder to obtain content features and attribute features,***,a mean mapping rule is introduced to map the binary secret information into a noise vector,conforming to the distribution of attribute *** noise vector is input into the generator to produce the attribute transformed stego image with the content feature of the reference ***,we design an adversarial loss,a reconstruction loss,and an image diversity loss to train the proposed *** results demonstrate that the stego images generated by the proposed method are of high quality,with an average extraction accuracy of 99.4%for the hidden ***,since the stego image has a uniform distribution similar to the attribute-transformed image without secret information,it effectively resists both subjective and objective steganalysis.
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion...
详细信息
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
暂无评论