Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID eff...
详细信息
Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was *** digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional *** of these three parts was separately *** the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using *** the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area ***,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital *** experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose *** confirms the practicality and accuracy of the proposed modeling *** TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs.
Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic *** tackle the AND problem,existing studies have propo...
详细信息
Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic *** tackle the AND problem,existing studies have proposed various approaches based on different types of information,such as raw document features(e.g.,co-authors,titles,and keywords),the fusion feature(e.g.,a hybrid publication embedding based on multiple raw document features),the local structural information(e.g.,a publication's neighborhood information on a graph),and the global structural information(e.g.,interactive information between a node and others on a graph).However,there has been no work taking all the above-mentioned information into account and taking full advantage of the contributions of each raw document feature for the AND problem so *** fill the gap,we propose a novel framework named EAND(Towards Effective Author Name Disambiguation by Hybrid Attention).Specifically,we design a novel feature extraction model,which consists of three hybrid attention mechanism layers,to extract key information from the global structural information and the local structural information that are generated from six similarity graphs constructed based on different similarity coefficients,raw document features,and the fusion *** hybrid attention mechanism layer contains three key modules:a local structural perception,a global structural perception,and a feature ***,the mean absolute error function in the joint loss function is used to introduce the structural information loss of the vector *** results on two real-world datasets demonstrate that EAND achieves superior performance,outperforming state-of-the-art methods by at least+2.74%in terms of the micro-F1 score and+3.31%in terms of the macro-F1 score.
In this paper,we investigate a Reconfigurable Intelligent Surface(RIS)-assisted secure Symbiosis Radio(SR)network to address the information leakage of the primary transmitter(PTx)to potential ***,the RIS serves as a ...
详细信息
In this paper,we investigate a Reconfigurable Intelligent Surface(RIS)-assisted secure Symbiosis Radio(SR)network to address the information leakage of the primary transmitter(PTx)to potential ***,the RIS serves as a secondary transmitter in the SR network to ensure the security of the communication between the PTx and the Primary Receiver(PRx),and simultaneously transmits its information to the PTx concurrently by configuring the phase *** the presence of multiple eavesdroppers and uncertain channels in practical scenarios,we jointly optimize the active beamforming of PTx and the phase shifts of RIS to maximize the secrecy energy efficiency of RIS-supported SR networks while satisfying the quality of service requirement and the secure communication *** solve this complicated non-convex stochastic optimization problem,we propose a secure beamforming method based on Proximal Policy Optimization(PPO),which is an efficient deep reinforcement learning algorithm,to find the optimal beamforming strategy against *** results show that the proposed PPO-based method is able to achieve fast convergence and realize the secrecy energy efficiency gain by up to 22%when compared to the considered benchmarks.
This paper deals with the issue of performance-guaranteed control for discrete-time systems under communication constraints. To alleviate communication burdens, an event-triggered mechanism and quantized data-based pr...
详细信息
Nowadays, the proliferation of open Internet of Things (IoT) devices has made IoT systems increasingly vulnerable to cyber attacks. It is of great practical significance to solve the security issues of IoT systems. Dr...
详细信息
The effectiveness of modeling contextual information has been empirically shown in numerous computer vision tasks. In this paper, we propose a simple yet efficient augmented fully convolutional network(AugFCN) by aggr...
详细信息
The effectiveness of modeling contextual information has been empirically shown in numerous computer vision tasks. In this paper, we propose a simple yet efficient augmented fully convolutional network(AugFCN) by aggregating content-and position-based object contexts for semantic ***, motivated because each deep feature map is a global, class-wise representation of the input,we first propose an augmented nonlocal interaction(AugNI) to aggregate the global content-based contexts through all feature map interactions. Compared to classical position-wise approaches, AugNI is more efficient. Moreover, to eliminate permutation equivariance and maintain translation equivariance, a learnable,relative position embedding branch is then supportably installed in AugNI to capture the global positionbased contexts. AugFCN is built on a fully convolutional network as the backbone by deploying AugNI before the segmentation head network. Experimental results on two challenging benchmarks verify that AugFCN can achieve a competitive 45.38% mIoU(standard mean intersection over union) and 81.9% mIoU on the ADE20K val set and Cityscapes test set, respectively, with little computational overhead. Additionally, the results of the joint implementation of AugNI and existing context modeling schemes show that AugFCN leads to continuous segmentation improvements in state-of-the-art context modeling. We finally achieve a top performance of 45.43% mIoU on the ADE20K val set and 83.0% mIoU on the Cityscapes test set.
Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
Owing to the computational density and complexity of vehicle applications, unique vehicle mobility and limited edge server resources, Vehicle Edge Computing (VEC) faces significant challenges. Unmanned Aerial Vehicles...
详细信息
The scaler and scheduler of serverless system are the two cornerstones that ensure service quality and efficiency. However, existing scalers and schedulers are constrained by static thresholds, scaling latency, and si...
详细信息
暂无评论