Online social networks are becoming more and more popular, according to recent trends. The user's primary concern is the secure preservation of their data and privacy. A well-known method for preventing individual...
详细信息
Human Activity Recognition(HAR)has always been a difficult task to *** is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with ot...
详细信息
Human Activity Recognition(HAR)has always been a difficult task to *** is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things(IoT).Human Activity Recognition data can be recorded with the help of sensors,images,or *** daily routine-based human activities such as walking,standing,sitting,etc.,could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network(2D CNN)MODEL,Long Short Term Memory(LSTM)Model,Bidirectional long short-term memory(Bi-LSTM)are used for the *** has been demonstrated that recognizing the daily routine-based on human activities can be extremely accurate,with almost all activities accurately getting recognized over 90%of the ***,because all the examples are generated from only 20 s of data,these actions can be recognised *** from classification,the work extended to verify and investigate the need for wearable sensing devices in individually walking patients with Cerebral Palsy(CP)for the evaluation of chosen Spatio-temporal features based on 3D foot ***-control research was conducted with 35 persons with CP ranging in weight from 25 to 65 *** Motion Capture(OMC)equipment was used as the referral method to assess the functionality and quality of the foot-worn *** average accuracy±precision for stride length,cadence,and step length was 3.5±4.3,4.1±3.8,and 0.6±2.7 cm *** cadence,stride length,swing,and step length,people with CP had considerably high inter-stride ***-worn sensing devices made it easier to examine Gait Spatio-temporal data even without a laboratory set up with high accuracy and precision about gait abnormalities in people who have CP during linear walking.
Federated learning (FL) is a promising artificial intelligence framework that enables clients to collectively train models with data privacy. However, in real-world scenarios, to construct practical FL frameworks, sev...
详细信息
Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action *** this paper,we propose a ...
详细信息
Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action *** this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping *** network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution *** is composed of three main ***,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature ***,after upsampling,the network eliminates redundant features,improving the overall ***,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher *** results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO ***,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications.
Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current ***,the complex temporal and spatial variability of ocean currents...
详细信息
Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current ***,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data *** deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean *** this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction ***,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current ***,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU.
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensem...
详细信息
Considering the recent developments in the digital environment,ensuring a higher level of security for networking systems is *** security approaches are being constantly developed to protect against evolving *** ensemble model for the intrusion classification system yielded promising results based on the knowledge of many prior *** research work aimed to create a more diverse and effective ensemble *** this end,selected six classification models,Logistic Regression(LR),Naive Bayes(NB),K-Nearest Neighbor(KNN),Decision Tree(DT),Support Vector Machine(SVM),and Random Forest(RF)from existing study to run as independent *** the individual models were trained,a Correlation-Based Diversity Matrix(CDM)was created by determining their *** models for the ensemble were chosen by the proposed Modified Minimization Approach for Model Subset Selection(Modified-MMS)from Lower triangular-CDM(L-CDM)as *** proposed algorithm performance was assessed using the Network Security Laboratory—Knowledge Discovery in Databases(NSL-KDD)dataset,and several performance metrics,including accuracy,precision,recall,and *** selecting a diverse set of models,the proposed system enhances the performance of an ensemble by reducing overfitting and increasing prediction *** proposed work achieved an impressive accuracy of 99.26%,using only two classification models in an ensemble,which surpasses the performance of a larger ensemble that employs six classification models.
News text is an important branch of natural language processing. Compared to ordinary texts, news text has significant economic and scientific value. The characteristics of news text include structural hierarchy, dive...
详细信息
A thin shell model refers to a surface or structure,where the object’s thickness is considered *** the context of 3D printing,thin shell models are characterized by having lightweight,hollow structures,and reduced ma...
详细信息
A thin shell model refers to a surface or structure,where the object’s thickness is considered *** the context of 3D printing,thin shell models are characterized by having lightweight,hollow structures,and reduced material *** versatility and visual appeal make them popular in various fields,such as cloth simulation,character skinning,and for thin-walled structures like leaves,paper,or metal ***,optimization of thin shell models without external support remains a challenge due to their minimal interior operational *** the same reasons,hollowing methods are also unsuitable for this *** fact,thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem *** this paper,we introduce a new visual disparity metric tailored for shell models,integrating local details and global shape attributes in terms of visual *** method modulates thin shell models using global deformations and local thickening while accounting for visual saliency,stability,and structural ***,thin shell models such as bas-reliefs,hollow shapes,and cloth can be stabilized to stand in arbitrary orientations,making them ideal for 3D printing.
UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect ...
详细信息
UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect jamming, leading to long sensing time and thus slow routing recovery. To address the issues raised by jamming attacks, we propose a new routing protocol, Electromagnetic Spectrum situation awareness Optimized Link State Routing (ESOLSR) protocol, to improve the existing OLSRv2 protocol. ESOLSR utilizes the spectrum situation awareness capability from the physical layer, and adopts joint-updating of link status, updating of interface functions, and adaptive adjustment of parameters. Our simulation results show that the improved protocol, ESOLSR, can recover routing and resume normal communication 26.6% faster compared to the existing protocols.
Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
暂无评论