The Computational Visual Media(CVM)conference series is intended to provide a prominent international forum for exchanging innovative research ideas and significant computational methodologies that either underpin or ...
详细信息
The Computational Visual Media(CVM)conference series is intended to provide a prominent international forum for exchanging innovative research ideas and significant computational methodologies that either underpin or apply visual media.
Within the electronic design automation(EDA) domain, artificial intelligence(AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutio...
详细信息
Within the electronic design automation(EDA) domain, artificial intelligence(AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding,overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level(RTL) designs, circuit netlists,and physical layouts. We champion the creation of large circuit models(LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area(PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems' capabilities.
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series *** to the challenges associated with annotating anomaly events,time series reconstructi...
详细信息
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series *** to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly ***,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time *** this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as ***,a series and feature mixing block is introduced to learn representations in 1D ***,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature ***,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly *** results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.
Cantonese opera, a key facet of Chinese traditional opera, boasts profound cultural and artistic value and has been designated as intangible cultural heritage. The use of certain roles is a basic concept in Cantonese ...
详细信息
The extensive use of electricity and the increasing number of consumers challenge matching power consumption with the power generated. Having a traditional way of power generation and distribution, power is also widel...
详细信息
As the applications of large language models (LLMs) expand across diverse fields, their ability to adapt to ongoing changes in data, tasks, and user preferences becomes crucial. Traditional training methods with stati...
详细信息
The integration of deep learning with conventional structured light center extraction techniques improves the accuracy of extracting structural gold centers. The method is divided into three steps. The initial step in...
详细信息
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing ***,traditional optimization methods often overlook the energy imbalance caused by node loa...
详细信息
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing ***,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network *** To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is *** K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search *** proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the *** The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering *** calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network *** This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network *** research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture.
Roads are an important part of transporting goods and products from one place to another. In developing countries, the main challenge is to maintain road conditions regularly. Roads can deteriorate from time to time. ...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
暂无评论