The use of generative adversarial network(GAN)-based models for the conditional generation of image semantic segmentation has shown promising results in recent ***,there are still some limitations,including limited di...
详细信息
The use of generative adversarial network(GAN)-based models for the conditional generation of image semantic segmentation has shown promising results in recent ***,there are still some limitations,including limited diversity of image style,distortion of detailed texture,unbalanced color tone,and lengthy training *** address these issues,we propose an asymmetric pre-training and fine-tuning(APF)-GAN model.
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can prov...
详细信息
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can provide interfaces for other types. Data modifications in CBS have potential risks such as null reference or data *** verification of these operations can improve the reliability of CBS to some extent. Although separation logic is a mainstream approach to verifying program correctness, the complex architecture of CBS creates some challenges for verifications. This paper develops a proof system based on separation logic for verifying the CBS data modifications. The proof system can represent the CBS architecture, describe the properties of the CBS system state, and specify the behavior of CBS data modifications. Using the interactive verification approach from Coq, the proof system is implemented as a verification tool. With this tool, the paper builds machine-checked proofs for the functional correctness of CBS data modifications. This work can thus analyze the reliability of cloud storage from a formal perspective.
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in **...
详细信息
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in *** studies have applied cryptography tools to solve this problem by distributing trust,but they ignore the existence of *** this paper,a blockchain-based Privacy-Preserving and Collusion-Resistant scheme(PPCR)for double auctions is proposed by employing both cryptography and blockchain technology,which is the first decentralized and collusion-resistant double auction scheme that guarantees bidder anonymity and bid privacy.A two-server-based auction framework is designed to support off-chain allocation with privacy preservation and on-chain dispute resolution for collusion resistance.A Dispute Resolution agreement(DR)is provided to the auctioneer to prove that they have conducted the auction correctly and the result is fair and *** addition,a Concise Dispute Resolution protocol(CDR)is designed to handle situations where the number of accused winners is small,significantly reducing the computation cost of dispute *** experimental results confirm that PPCR can indeed achieve efficient collusion resistance and verifiability of auction results with low on-chain and off-chain computational overhead.
Due to the probability characteristics of quantum mechanism, the combination of quantum mechanism and intelligent algorithm has received wide attention. Quantum dynamics theory uses the Schr?dinger equation as a quant...
详细信息
Due to the probability characteristics of quantum mechanism, the combination of quantum mechanism and intelligent algorithm has received wide attention. Quantum dynamics theory uses the Schr?dinger equation as a quantum dynamics equation. Through three approximation of the objective function, quantum dynamics framework(QDF) is obtained which describes basic iterative operations of optimization algorithms. Based on QDF, this paper proposes a potential barrier estimation(PBE) method which originates from quantum mechanism. With the proposed method, the particle can accept inferior solutions during the sampling process according to a probability which is subject to the quantum tunneling effect, to improve the global search capacity of optimization *** effectiveness of the proposed method in the ability of escaping local minima was thoroughly investigated through double well function(DWF), and experiments on two benchmark functions sets show that this method significantly improves the optimization performance of high dimensional complex functions. The PBE method is quantized and easily transplanted to other algorithms to achieve high performance in the future.
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the...
详细信息
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the owner to lose control of the *** a result,there are issues of intentional data leakage and tampering by third parties,and the private information contained in the data may lead to more significant ***,data is frequently maintained on multiple storage platforms,posing significant hurdles in terms of enlisting multiple parties to engage in data sharing while maintaining *** this work,we propose a new architecture for applying blockchains to data sharing and achieve efficient and reliable data sharing among heterogeneous *** design a new data sharing transaction mechanism based on the system architecture to protect the security of the raw data and the processing *** also design and implement a hybrid concurrency control protocol to overcome issues caused by the large differences in blockchain performance in our system and to improve the success rate of data sharing *** took Ethereum and Hyperledger Fabric as examples to conduct crossblockchain data sharing *** results show that our system achieves data sharing across heterogeneous blockchains with reasonable performance and has high scalability.
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions a...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-toend trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and th...
详细信息
Deep learning has achieved good results in the field of image recognition due to the key role of the optimizer in a deep learning network. In this work, the optimizers of dynamical system models are established,and the influence of parameter adjustments on the dynamic performance of the system is proposed. This is a useful supplement to the theoretical control models of optimizers. First, the system control model is derived based on the iterative formula of the optimizer, the optimizer model is expressed by differential equations, and the control equation of the optimizer is established. Second, based on the system control model of the optimizer, the phase trajectory process of the optimizer model and the influence of different hyperparameters on the system performance of the learning model are analyzed. Finally, controllers with different optimizers and different hyperparameters are used to classify the MNIST and CIFAR-10 datasets to verify the effects of different optimizers on the model learning performance and compare them with related methods. Experimental results show that selecting appropriate optimizers can accelerate the convergence speed of the model and improve the accuracy of model recognition. Furthermore, the convergence speed and performance of the stochastic gradient descent(SGD) optimizer are better than those of the stochastic gradient descent-momentum(SGD-M) and Nesterov accelerated gradient(NAG) optimizers.
Partial multi-label learning(PML) allows learning from rich-semantic objects with inaccurate annotations, where a set of candidate labels are assigned to each training example but only some of them are valid. Existi...
详细信息
Partial multi-label learning(PML) allows learning from rich-semantic objects with inaccurate annotations, where a set of candidate labels are assigned to each training example but only some of them are valid. Existing approaches rely on disambiguation to tackle the PML problem, which aims to correct noisy candidate labels by recovering the ground-truth labeling information ahead of prediction model induction. However, this dominant strategy might be suboptimal as it usually needs extra assumptions that cannot be fully satisfied in real-world scenarios. Instead of label correction, we investigate another strategy to tackle the PML problem, where the potential ambiguity in PML data is eliminated by correcting instance features in a label-specific manner. Accordingly, a simple yet effective approach named PASE, i.e., partial multi-label learning via label-specific feature corrections, is proposed. Under a meta-learning framework, PASElearns to exert label-specific feature corrections so that potential ambiguity specific to each class label can be eliminated and the desired prediction model can be induced on these corrected instance features with the provided candidate labels. Comprehensive experiments on a wide range of synthetic and real-world data sets validate the effectiveness of the proposed approach.
暂无评论