The rapid proliferation of unwired techniques and mobile instruments had profound effect on daily basis. To leverage the potential of these technologies in the hospitality industry, there have been early attempts to m...
详细信息
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplor...
详细信息
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplored. The recent work Unified GNN Sparsification (UGS) studies lottery ticket learning for GNNs, aiming to find a subset of model parameters and graph structures that can best maintain the GNN performance. However, it is tailed for the transductive setting, failing to generalize to unseen graphs, which are common in inductive tasks like graph classification. In this work, we propose a simple and effective learning paradigm, Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets with inductive pruning capacity. To prune the input graphs, we design a predictive model to generate importance scores for each edge based on the input. To prune the model parameters, it views the weight’s magnitude as their importance scores. Then we design an iterative co-pruning strategy to trim the graph edges and GNN weights based on their importance scores. Although it might be strikingly simple, ICPG surpasses the existing pruning method and can be universally applicable in both inductive and transductive learning settings. On 10 graph-classification and two node-classification benchmarks, ICPG achieves the same performance level with 14.26%–43.12% sparsity for graphs and 48.80%–91.41% sparsity for the GNN model.
Compared with traditional environments,the cloud environment exposes online services to additional vulnerabilities and threats of cyber attacks,and the cyber security of cloud platforms is becoming increasingly promin...
详细信息
Compared with traditional environments,the cloud environment exposes online services to additional vulnerabilities and threats of cyber attacks,and the cyber security of cloud platforms is becoming increasingly prominent.A piece of code,known as a Webshell,is usually uploaded to the target servers to achieve multiple *** Webshell attacks has become a hot spot in current ***,the traditional Webshell detectors are not built for the cloud,making it highly difficult to play a defensive role in the cloud ***,a Webshell detection system based on deep learning that is successfully applied in various scenarios,is proposed in this *** system contains two important components:gray-box and neural network *** gray-box analyzer defines a series of rules and algorithms for extracting static and dynamic behaviors from the code to make the decision *** neural network analyzer transforms suspicious code into Operation Code(OPCODE)sequences,turning the detection task into a classification *** experiment results show that SmartEagleEye achieves an encouraging high detection rate and an acceptable false-positive rate,which indicate its capability to provide good protection for the cloud environment.
Machine learning algorithms are used in various real-time applications, where security is one of the major problems. Security is applied in various aspects of the application in cloud computing. One of the security is...
详细信息
In this paper, the proposed FLB-YOLOv8 model address issues in current traffic sign recognition, such as leakage, false detection, low accuracy, and excessive model parameters. Firstly, a small target detection layer ...
详细信息
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security pr...
详细信息
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security problems brought by the mobile *** for Android system,due to its open source nature,malicious applications continue to emerge,which greatly threatens the data security of ***,this paper proposes a method of trusted embedded static measurement and data transmission protection architecture based on Android to reduce the risk of data leakage in the process of terminal storage and *** conducted detailed data and feasibility analysis of the proposed method from the aspects of time consumption,storage overhead and *** experimental results show that this method can detect Android system layer attacks such as self-booting of the malicious module and improve the security of data encryption and transmission process *** with the native system,the additional performance overhead is small.
This study proposes an improved YOLOv8 algorithm based on the network model framework in response to issues in grading accuracy, slow speed, high false alarm rate, and the excessive workload of monitoring staff encoun...
详细信息
In the field of smart agriculture, the rapid and accurate detection of grape leaf diseases is crucial, especially for early-stage small lesions. To enhance the efficiency of detecting grape leaf diseases in resource-l...
详细信息
Indoor electrical systems are aimed to provide comfort to the occupants. However, their operation is contingent on the presence or needs of the residents. Hence, to optimize energy consumption and guarantee the desire...
详细信息
Handling service access in a cloud environment has been identified as a critical challenge in the modern internet world due to the increased rate of intrusion *** address such threats towards cloud services,numerous t...
详细信息
Handling service access in a cloud environment has been identified as a critical challenge in the modern internet world due to the increased rate of intrusion *** address such threats towards cloud services,numerous techniques exist that mitigate the service threats according to different *** rule-based approaches are unsuitable for new threats,whereas trust-based systems estimate trust value based on behavior,flow,and other ***,the methods suffer from mitigating intrusion attacks at a higher *** article presents a novel Multi Fractal Trust Evaluation Model(MFTEM)to overcome these *** method involves analyzing service growth,network growth,and quality of service *** process estimates the user’s trust in various ways and the support of the user in achieving higher service performance by calculating Trusted Service Support(TSS).Also,the user’s trust in supporting network stream by computing Trusted Network Support(TNS).Similarly,the user’s trust in achieving higher throughput is analyzed by computing Trusted QoS Support(TQS).Using all these measures,the method adds the Trust User Score(TUS)value to decide on the clearance of user *** proposed MFTEM model improves intrusion detection accuracy with higher performance.
暂无评论