咨询与建议

限定检索结果

文献类型

  • 392 篇 期刊文献
  • 283 篇 会议
  • 32 册 图书

馆藏范围

  • 707 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 438 篇 工学
    • 329 篇 计算机科学与技术...
    • 284 篇 软件工程
    • 87 篇 控制科学与工程
    • 66 篇 生物工程
    • 61 篇 信息与通信工程
    • 49 篇 生物医学工程(可授...
    • 48 篇 光学工程
    • 31 篇 电气工程
    • 29 篇 电子科学与技术(可...
    • 28 篇 机械工程
    • 25 篇 交通运输工程
    • 21 篇 建筑学
    • 21 篇 安全科学与工程
    • 19 篇 土木工程
    • 19 篇 化学工程与技术
  • 244 篇 理学
    • 149 篇 数学
    • 76 篇 生物学
    • 55 篇 统计学(可授理学、...
    • 46 篇 物理学
    • 29 篇 系统科学
    • 19 篇 化学
  • 124 篇 管理学
    • 81 篇 管理科学与工程(可...
    • 57 篇 图书情报与档案管...
    • 41 篇 工商管理
  • 46 篇 医学
    • 43 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
    • 15 篇 公共卫生与预防医...
  • 30 篇 法学
    • 29 篇 社会学
  • 14 篇 教育学
    • 14 篇 教育学
  • 11 篇 经济学
  • 11 篇 农学
  • 3 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 18 篇 deep learning
  • 14 篇 machine learning
  • 12 篇 computational mo...
  • 11 篇 accuracy
  • 10 篇 graph neural net...
  • 10 篇 training
  • 9 篇 data models
  • 8 篇 reinforcement le...
  • 8 篇 semantics
  • 8 篇 decision making
  • 8 篇 artificial intel...
  • 7 篇 visualization
  • 7 篇 embeddings
  • 7 篇 complexity theor...
  • 6 篇 covid-19
  • 6 篇 big data
  • 6 篇 medical services
  • 6 篇 contrastive lear...
  • 6 篇 large language m...
  • 6 篇 feature extracti...

机构

  • 94 篇 school of comput...
  • 89 篇 school of comput...
  • 60 篇 school of comput...
  • 55 篇 school of comput...
  • 33 篇 school of comput...
  • 32 篇 school of comput...
  • 25 篇 school of comput...
  • 24 篇 school of comput...
  • 19 篇 arizona state un...
  • 14 篇 school of comput...
  • 13 篇 arizona state un...
  • 10 篇 arizona state un...
  • 10 篇 school of comput...
  • 8 篇 arizona state un...
  • 8 篇 school of comput...
  • 8 篇 the school of co...
  • 7 篇 arizona state un...
  • 7 篇 university of wo...
  • 6 篇 school of mathem...
  • 6 篇 school of artifi...

作者

  • 36 篇 liu huan
  • 29 篇 michael katina
  • 22 篇 wang yalin
  • 21 篇 zhu wenhui
  • 21 篇 yang yingzhen
  • 18 篇 giulia pedrielli
  • 16 篇 richa andréa w.
  • 16 篇 srivastava siddh...
  • 14 篇 qiu peijie
  • 13 篇 huan liu
  • 12 篇 yan hao
  • 12 篇 pedrielli giulia
  • 12 篇 kim kibaek
  • 12 篇 daymude joshua j...
  • 12 篇 yang yezhou
  • 11 篇 banerjee ayan
  • 11 篇 chen xiwen
  • 11 篇 wei hua
  • 10 篇 ghasemzadeh hass...
  • 10 篇 ryu minseok

语言

  • 630 篇 英文
  • 68 篇 其他
  • 9 篇 中文
检索条件"机构=School of Computing and Augmented Intelligence"
707 条 记 录,以下是1-10 订阅
排序:
Defeasible Argumentation-based Epistemic Planning with Preferences
Journal of Applied Logics
收藏 引用
Journal of Applied Logics 2025年 第3期12卷 787-823页
作者: Teze, Juan C. L. Godo, Lluis Simari, Gerardo I. Argentina Spain Argentina School of Computing and Augmented Intelligence Arizona State University United States
Many real-world applications of intelligent systems involve solving planning problems of different nature, oftentimes in dynamic environments and having to deal with potentially contradictory information, leading to w... 详细信息
来源: 评论
A-FSL: Adaptive Few-Shot Learning via Task-Driven Context Aggregation and Attentive Feature Refinement  27th
A-FSL: Adaptive Few-Shot Learning via Task-Driven Context Ag...
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Paul, Riti Vora, Sahil Thakur, Nupur Li, Baoxin School of Computing and Augmented Intelligence Arizona State University TempeAZ85281 United States
Learning new categories with limited training samples presents a significant challenge for conventional deep learning frameworks. The few-shot learning (FSL) paradigm emerges as a potential solution to address practic... 详细信息
来源: 评论
Neuro-Symbolic Embedding for Short and Effective Feature Selection via Autoregressive Generation
收藏 引用
ACM Transactions on Intelligent Systems and Technology 2025年 第2期16卷 1-21页
作者: Gong, Nanxu Ying, Wangyang Wang, Dongjie Fu, Yanjie School of Computing and Augmented Intelligence Arizona State University TempeAZ United States Department of Computer Science University of Kansas LawrenceKS United States
Feature selection aims to identify the optimal feature subset for enhancing downstream models. Effective feature selection can remove redundant features, save computational resources, accelerate the model learning pro... 详细信息
来源: 评论
Automated Program Repair: Emerging Trends Pose and Expose Problems for Benchmarks
收藏 引用
ACM computing Surveys 2025年 第8期57卷 1-18页
作者: Renzullo, Joseph Reiter, Pemma Weimer, Westley Forrest, Stephanie School of Computing and Augmented Intelligence Arizona State University Tempe United States Arizona State University Tempe United States University of Michigan Ann Arbor United States
Machine learning (ML) pervades the field of Automated Program Repair (APR). Algorithms deploy neural machine translation and large language models (LLMs) to generate software patches, among other tasks. But, there are... 详细信息
来源: 评论
Abduction of Domain Relationships from Data for VQA  40
Abduction of Domain Relationships from Data for VQA
收藏 引用
40th International Conference on Logic Programming, ICLP 2024
作者: Chowdhury, Al Mehdi Saadat Shakarian, Paulo Simari, Gerardo I. School of Computing and Augmented Intelligence Arizona State University TempeAZ United States Bahia Blanca Argentina
In this paper, we study the problem of visual question answering (VQA) where the image and query are represented by ASP programs that lack domain data. We provide an approach that is orthogonal and complementary to ex... 详细信息
来源: 评论
Application Analysis of Artificial intelligence Technology in Comprehensive Energy Service  14th
Application Analysis of Artificial Intelligence Technology i...
收藏 引用
14th International Conference on Frontier computing, FC 2024
作者: Fu, Dengwei Ira A. Fulton Schools of Engineering School of Computing and Augmented Intelligence Arizona State University TempeAZ United States
With the growing global demand for energy and the increasingly serious environmental problems, the comprehensive energy services based on artificial intelligence technology, as an efficient, intelligent and sustainabl... 详细信息
来源: 评论
OntoKGen: A Genuine Ontology and Knowledge Graph Generator using Large Language Model  71
OntoKGen: A Genuine Ontology and Knowledge Graph Generator u...
收藏 引用
71st Annual Reliability and Maintainability Symposium, RAMS 2025
作者: Abolhasani, Mohammad Sadeq Pan, Rong School of Computing and Augmented Intelligence Arizona State University 699 S. Mill Avenue Suite 225 TempeAZ85281 United States
Extracting relevant and structured knowledge from large, complex technical documents within the Reliability and Maintainability (RAM) domain is labor-intensive and prone to errors. Our work addresses this challenge by... 详细信息
来源: 评论
Diffusion on Graph: Augmentation of Graph Structure for Node Classification
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Yancheng Liu, Changyu Yang, Yingzhen School of Computing and Augmented Intelligence Arizona State University United States
Graph diffusion models have recently been proposed to synthesize entire graphs, such as molecule graphs. Although existing methods have shown great performance in generating entire graphs for graph-level learning task... 详细信息
来源: 评论
Generating Customized Prompts for Zero-Shot Rare Event Medical Image Classification Using LLM
Generating Customized Prompts for Zero-Shot Rare Event Medic...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Payal Kamboj Ayan Banerjee Bin Xu Sandeep Gupta School of Computing and Augmented Intelligence Arizona State University Tempe USA
Rare events, due to their infrequent occurrences, do not have much data, and hence deep learning techniques fail in estimating the distribution for such data. Open-vocabulary models represent an innovative approach to... 详细信息
来源: 评论
OntoKGen: A Genuine Ontology and Knowledge Graph Generator Using Large Language Model
OntoKGen: A Genuine Ontology and Knowledge Graph Generator U...
收藏 引用
Annual Symposium on Reliability and Maintainability (RAMS)
作者: Mohammad Sadeq Abolhasani Rong Pan School of Computing and Augmented Intelligence Arizona State University Tempe AZ
Extracting relevant and structured knowledge from large, complex technical documents within the Reliability and Maintainability (RAM) domain is labor-intensive and prone to errors. Our work addresses this challenge by... 详细信息
来源: 评论